Advertisement

Ultra-Small Platinum Nanoparticles with High Catalytic Selectivity Synthesized by an Eco-friendly Method Supported on Natural Hydroxyapatite

  • S. A. Gama-Lara
  • R. NatividadEmail author
  • A. R. Vilchis-Nestor
  • Rafael López-Castañares
  • I. García-Orozco
  • María G. Gonzalez-Pedroza
  • Raúl A. Morales-LuckieEmail author
Article
  • 17 Downloads

Abstract

The biosynthesis of Pt-nanoparticles (Pt NPs) supported on bovine bone powder was conducted by an environmentally friendly method that consists on immersing bovine bone powder into a Pt4+ metal ion solution at room temperature, atmospheric pressure and subsequent reduction by Heterotheca inuloides. It is worth pointing out that a calcination process is not required for the synthesis of this catalyst by the method reported herein. The nanocomposite was characterized by transmission electron microscopy (TEM), which revealed uniformly dispersed platinum nanoparticles with quasi-spherical form and average particle size of 7.1 nm. The XPS studies exhibited the presence of 47.62% Pt° and 51.84% PtO. The catalyst activity was tested in the selective hydrogenation of 2-butyne-1,4-diol towards 2-butene-1,4-diol. The nanocomposite exhibits a reasonable catalytic performance with nearly 100% conversion of the alkyne and 96% selectivity towards 2-butene-1,4-diol.

Graphic Abstract

Keywords

Platinum nanoparticles Green nanosynthesis Bionanotechnology Heterotheca inuloides Selective catalyst 

Notes

Acknowledgements

We thank Dr. Gustavo López-Téllez (CCIQS, Universidad Autónoma del Estado de México) for assistance in XPS studies and Citlalit Martínez for technical support. S.A. Gama-Lara acknowledges CONACYT financial support to conduct postgraduate studies. CONACYT Project 269093 is also acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Bae SW, Tan W, Hong J-I (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48(17):2270–2282CrossRefGoogle Scholar
  2. 2.
    He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406CrossRefGoogle Scholar
  3. 3.
    Jiang Z, Xie J, Jiang D, Wei X, Chen M (2013) Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 15(3):560–569CrossRefGoogle Scholar
  4. 4.
    Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308CrossRefGoogle Scholar
  5. 5.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534CrossRefGoogle Scholar
  6. 6.
    Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692CrossRefGoogle Scholar
  7. 7.
    Zhang W, Lu G, Cui C, Liu Y, Li S, Yan W et al (2014) A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv Mater 26(24):4056–4060CrossRefGoogle Scholar
  8. 8.
    Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475CrossRefGoogle Scholar
  9. 9.
    Li P-Z, Aranishi K, Xu Q (2012) ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem Commun 48(26):3173–3175CrossRefGoogle Scholar
  10. 10.
    Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci 104(21):8691–8696CrossRefGoogle Scholar
  11. 11.
    López Iturbe J, Vilchis Nestor AR, Sánchez Mendieta V, Avalos Borja M (2013) Obtención y caracterización de nanopartículas de plata soportadas en fibra de algodón. Superf y vacío 26(3):73–78Google Scholar
  12. 12.
    Becerril-Juárez IG, Morales-Luckie RA, Ureña-Nuñez F, Arenas-Alatorre JA, Hinestroza JP, Sánchez-Mendieta V (2012) Silver micro-, submicro-and nano-crystals using bovine bone as template. Formation of a silver/bovine bone composite. Mater Lett 85:157–160CrossRefGoogle Scholar
  13. 13.
    Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19(10):1309–1319CrossRefGoogle Scholar
  14. 14.
    Veith GM, Lupini AR, Rashkeev S, Pennycook SJ, Mullins DR, Schwartz V et al (2009) Thermal stability and catalytic activity of gold nanoparticles supported on silica. J Catal 262(1):92–101CrossRefGoogle Scholar
  15. 15.
    Francesko A, Blandón L, Vázquez M, Petkova P, Morató J, Pfeifer A et al (2015) Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles. ACS Appl Mater Interfaces 7(18):9792–9799CrossRefGoogle Scholar
  16. 16.
    Ravindra S, Mohan YM, Reddy NN, Raju KM (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf A 367(1–3):31–40CrossRefGoogle Scholar
  17. 17.
    Lin X, Wu M, Wu D, Kuga S, Endo T, Huang Y (2011) Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green Chem 13(2):283–287CrossRefGoogle Scholar
  18. 18.
    Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, Mendis de Silva R, Udagama PV (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 2017:10CrossRefGoogle Scholar
  19. 19.
    Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7(3):227–233CrossRefGoogle Scholar
  20. 20.
    Raja PB, Rahim AA, Qureshi AK, Awang K (2014) Green synthesis of silver nanoparticles using tannins. Mater Sci-Pol 32(3):408–413CrossRefGoogle Scholar
  21. 21.
    Silva-de-Hoyos L, Sánchez-Mendieta V, Rico-Moctezuma A, Vilchis-Nestor A, Camacho-López M, Avalos-Borja M (2012) Silver nanoparticles biosynthesized using Opuntia ficus aqueous extract. Superf y vacío 25(1):31–35Google Scholar
  22. 22.
    Rengga WDP, Yufitasari A, Adi W (2017) Synthesis of silver nanoparticles from silver nitrate solution using green tea extract (Camelia sinensis) as bioreductor. Jurnal Bahan Alam Terbarukan 6(1):32–38Google Scholar
  23. 23.
    Kumar B, Smita K, Cumbal L, Debut A (2017) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci 24(1):45–50CrossRefGoogle Scholar
  24. 24.
    Raja S, Ramesh V, Thivaharan V (2017) Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 10(2):253–261CrossRefGoogle Scholar
  25. 25.
    Almajano MP, Carbo R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108(1):55–63CrossRefGoogle Scholar
  26. 26.
    Teimuri-Mofrad R, Hadi R, Tahmasebi B, Farhoudian S, Mehravar M, Nasiri R (2017) Green synthesis of gold nanoparticles using plant extract: mini-review. Nanochem Res 2(1):8–19Google Scholar
  27. 27.
    Gama-Lara SA, Morales-Luckie R, Argueta-Figueroa L, Hinestroza JP, García-Orozco I, Natividad R (2018) Synthesis, characterization, and catalytic activity of platinum nanoparticles on bovine-bone powder: a novel support. J Nanomater 2018:8CrossRefGoogle Scholar
  28. 28.
    Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7(4):419–431CrossRefGoogle Scholar
  29. 29.
    Mandal AB, Ramesh DV, Dhar SC (1987) Physico-chemical studies of micelle formation on sepia cartilage collagen solutions in acetate buffer and its interaction with ionic and nonionic micelles: hydrodynamic and thermodynamic studies. Eur J Biochem 169(3):617–628CrossRefGoogle Scholar
  30. 30.
    Tanielyan SK, More SR, Augustine RL, Schmidt SR (2017) Continuous liquid-phase hydrogenation of 1, 4-butynediol to high-purity 1, 4-butanediol over particulate raney nickel catalyst in a fixed bed reactor. Org Process Res Dev 21(3):327–335CrossRefGoogle Scholar
  31. 31.
    Duncanson IT, Sutherland IW, Cullen B, Jackson SD, Lennon D (2005) The hydrogenation of 2-butyne-1, 4-diol over a carbon-supported palladium catalyst. Catal Lett 103(3–4):195–199CrossRefGoogle Scholar
  32. 32.
    Natividad R, Kulkarni R, Nuithitikul K, Raymahasay S, Wood J, Winterbottom J (2004) Analysis of the performance of single capillary and multiple capillary (monolith) reactors for the multiphase Pd-catalyzed hydrogenation of 2-butyne-1, 4-diol. Chem Eng Sci 59(22–23):5431–5438CrossRefGoogle Scholar
  33. 33.
    Fishwick RP, Natividad R, Kulkarni R, McGuire PA, Wood J, Winterbottom JM et al (2007) Selective hydrogenation reactions: a comparative study of monolith CDC, stirred tank and trickle bed reactors. Catal Today 128(1–2):108–114CrossRefGoogle Scholar
  34. 34.
    Suber L, Sondi I, Matijević E, Goia DV (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interface Sci 288(2):489–495CrossRefGoogle Scholar
  35. 35.
    Telkar M, Rode C, Jaganathan R, Rane V, Chaudhari R (2002) Platinum catalyzed hydrogenation of 2-butyne-1, 4-diol. J Mol Catal A 187(1):81–93CrossRefGoogle Scholar
  36. 36.
    Park JY, Aliaga C, Russell Renzas J, Lee H, Somorjai GA (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129:1–6CrossRefGoogle Scholar
  37. 37.
    Joannet E, Horny C, Kiwi-Minsker L, Renken A (2002) Palladium supported on filamentous active carbon as effective catalyst for liquid phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol. Chem Eng Sci 57:3453–3460CrossRefGoogle Scholar
  38. 38.
    Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Gama-Lara
    • 2
  • R. Natividad
    • 1
    Email author
  • A. R. Vilchis-Nestor
    • 1
  • Rafael López-Castañares
    • 3
  • I. García-Orozco
    • 3
  • María G. Gonzalez-Pedroza
    • 4
  • Raúl A. Morales-Luckie
    • 1
    Email author
  1. 1.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Universidad del Valle de MéxicoMetepecMexico
  3. 3.Laboratorio de Investigación y Desarrollo de Materiales Avanzados Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  4. 4.Doctorado en Ciencia de Materiales de la Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations