Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3395–3424 | Cite as

A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion

  • Mohammad Ashraf AliEmail author
  • Shakeel Ahmed
  • Nadhir Al-Baghli
  • Zuhair Malaibari
  • Ahmed Abutaleb
  • Ayman Yousef
Article

Abstract

The conversion of methanol to propylene is a value-added process and has gained extreme significance because of high demand for propylene in the production of petrochemicals. The demand for propylene is increasing due to increasing usage of polypropylene. During the last two decades, propylene demand growth has far overtaken ethylene demand growth and it is predicted to be more than double in the next 20 years. The Dalian Institute of Chemical Physics has been working for the last three decades in the R&D of the methanol to olefins reaction and have developed MTP technology. The catalytic materials used in methanol to propylene conversion include SAPO-34 (small-pore molecular sieves), ZSM-5 (medium-pore zeolites) and its modified forms. Limited research has also been done using large pore zeolites such as mordenite and beta. High-silica EU-1 zeolite has been found as an efficient catalyst for MTP conversion. The use of SAPO-18, ZSM-23 and CON-type zeolite for MTP reaction has also been discussed. Methanol to propylene research has been carried using structured catalysts including ceramic based honeycomb or monolith and silicon carbide foam. The major difference in process design between SAPO-34 and H-ZSM-5 is that the SAPO-34 is used in fluidized bed process while H-ZSM-5 catalyst is used in fixed bed process. SAPO-34 is a selective catalyst for olefins but deactivates fast and thus requires frequent regeneration. The H-ZSM-5 is less selective for olefins but shows less deactivation and thus quite stable. A number of structured supports such as monolith, foam, and mesh have been researched for coating with the active zeolite based catalysts. The structured catalysts have the advantage to reduce the diffusional limitations of pellet catalyst system and have exhibited excellent results in terms of activity and selectivity for olefins as well as in reducing aromatics formation. The results obtained in our research using zeolite coated structured catalysts have shown significant increase in propylene selectivity. The significant findings of our work has been published and patented with US Patent and Trademark Office (USPTO).

Graphic Abstract

Keywords

Methanol to propylene MTP Methanol to olefins MTO SAPO-34 Silicoaluminosilicates HZSM-5 Silicoaluminophosphates Structured catalysts Monolith Foam 

Notes

Acknowledgements

The authors would like to thank Saudi Basic Industries Corporation (SABIC) and Jazan University for financially supporting this project. The project was funded through SABIC Grant No. 3/2018/1.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Park JW, Seo G (2009) Appl Catal A 356:180–188Google Scholar
  2. 2.
    Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922–1938Google Scholar
  3. 3.
    Liu J, Zhang CX, Shen ZH, Hua WM, Tang Y, Shen W, Yue YH, Xu HL (2009) Catal Commun 10:1506–1509Google Scholar
  4. 4.
    Song ZX, Takahashi A, Nakamura I, Fujitani T (2010) Appl Catal A 384:201–205Google Scholar
  5. 5.
    Wu WZ, Guo WY, Xiao WD, Luo M (2011) Chem Eng Sci 66:4722–4732Google Scholar
  6. 6.
    Zhu QJ, Kondo JN, Setoyama T, Yamaguchi M, Domen K, Tatsumi T (2008) Chem Commun 0:5164–5166Google Scholar
  7. 7.
    Jiang GY, Zhang L, Zhao Z, Zhou XY, Duan AJ, Xu CM, Gao JS (2008) Appl Catal A 340:176–182Google Scholar
  8. 8.
    Galadima A, Muraza O (2015) Ind Eng Chem Res 54:4891–4905Google Scholar
  9. 9.
    Hirota Y, Murata K, Miyamoto M, Egashira Y, Nishiyama N (2010) Catal Lett 140:22–26Google Scholar
  10. 10.
    Shalmani FM, Halladj R, Askari S (2012) Powder Technol 221(1):395–402Google Scholar
  11. 11.
    Razavian M, Halladj R, Askari S (2011) Rev Adv Mater Sci 29:83–99Google Scholar
  12. 12.
    Askari S, Halladj R, Sohrabi M (2012) Microporous Mesoporous Mater 163:334Google Scholar
  13. 13.
    Sun QM, Wang N, Xi DY, Yang M, Yu JH (2014) Chem Commun 50:6502–6505Google Scholar
  14. 14.
    Jianqing L, Zhuo L, Han D, Wu J (2014) Powder Technol 262:177–182Google Scholar
  15. 15.
    Lee YJ, Baek SC, Jun KW (2007) Appl Catal A 329:130–136Google Scholar
  16. 16.
    Xing AH, Wang L, Shi YL (2014) Energy Fuels 28:3339–3344Google Scholar
  17. 17.
    Cui XY, Wang JJ, Meng P (2018) Chin J Inorg Chem 34(2):300–308Google Scholar
  18. 18.
    Guo L, Zhu W, Miao P (2018) Ind Eng Chem Res 57(31):10398–10402Google Scholar
  19. 19.
    Salmasi M, Shohreh F, Ali TN (2011) J Ind Eng Chem 17:755–761Google Scholar
  20. 20.
    Erfan A, Haghighi M, Pazhohniya Z, Aghamohammadi S (2016) Microporous Mesoporous Mater 226:331–343Google Scholar
  21. 21.
    Masoumeh GA, Ranjbar PR, Rashidi A (2017) Reac Kinet Mech Catal 122(2):1265–1279Google Scholar
  22. 22.
    Sadeghpour P, Haghighi M (2018) Asia-Pacific J Chem Eng 13(1):2163Google Scholar
  23. 23.
    Mirza K, Ghadiri M, Haghighi M (2018) Microporous Mesoporous Mater 260:155–165Google Scholar
  24. 24.
    Salih HA, Oki M, Abussaud B (2018) Ind Eng Chem Res 57(19):6639–6646Google Scholar
  25. 25.
    Akhoundzadeh H, Taghizadeh M, Pajaie HSH (2018) Particuology 40:113–122Google Scholar
  26. 26.
    Xu Z, Li J, Qian W, Ma H, Zhang H, Ying W (2017) RSC Adv 7:54866–54875Google Scholar
  27. 27.
    Aghaei E, Haghighi MJ (2015) Porous Mater 22(1):187–200Google Scholar
  28. 28.
    Eslami AA, Haghighi M, Sadeghpour P (2017) Powder Technol 310:187–200Google Scholar
  29. 29.
    Hajimirzaee S, Ainte M, Soltani B, Behbahani RM, Leeke GA, Wood J (2015) Chem Eng Res Des 93:541–553Google Scholar
  30. 30.
    Lee KY, Lee HK, Ihm SK (2010) Topics Catal 53:247–253Google Scholar
  31. 31.
    Chen H, Yaquan W, Chao S, Xiao W, Cui W (2018) Catal Commun 112:10–14Google Scholar
  32. 32.
    Li J, Liu M, Guo X, Dai C, Song C (2018) J Energy Chem 27(4):1225–1230Google Scholar
  33. 33.
    Rostamizadeh M, Taeb A (2016) Synth React Inorg, Met-Org, Nano-Met Chem 46(5):665–671Google Scholar
  34. 34.
    Rostamizadeh M, Yaripour F, Hazrati H (2018) J Porous Mater 25(5):1287–1299Google Scholar
  35. 35.
    Li J, Liu M, Guo X, Zeng S, Xu S, Wei Y, Liu Z, Song C (2018) Ind Eng Chem Res 57:15375–15384Google Scholar
  36. 36.
    Si H, Shan J, Qing Z, Wang Y, Liu Y, Gong Y, Wu Z, Dou T (2012) Appl Catal A 445–446:215–220Google Scholar
  37. 37.
    Kim Y, Kim JC, Jo C, Kim TW, Kim CU, Jeong SY, Chae HJ (2016) Microporous Mesoporous Mater 222:1–8Google Scholar
  38. 38.
    Si H, Zhang Q, Xia Z, Gong YJ, Xu J, Deng F, Dou T (2012) Acta Phys Chim Sin 28:2705–2712Google Scholar
  39. 39.
    Yao M, Hu S, Wang J, Dou T, Wu YP (2012) Acta Phys Chim Sin 28:2122–2128Google Scholar
  40. 40.
    Hadi N, Alizadeh R, Niaei A (2017) J Ind Eng Chem 54:82–97Google Scholar
  41. 41.
    Mei CS, Wen PY, Liu ZC, Liu HX, Wang YD, Yang WM, Xie ZK, Hua WM, Gao Z (2008) J Catal 258:243–249Google Scholar
  42. 42.
    Sun C, Junming D, Jian L, Yisu Y, Nan R, Shen S, Hualong X, Yi T (2010) Chem Commun 46:2671–2673Google Scholar
  43. 43.
    Feng R, Wang X, Lin J (2018) Microporous Mesoporous Mater 270:57–66Google Scholar
  44. 44.
    Feng R, Yan X, Hu X, Yan Z, Lin J, Li Z, Hou K, Rood MJ (2018) Catal Commun 109:1–5Google Scholar
  45. 45.
    Zhuang S, Hu Z, Huang L, Qin F, Huang Z, Sun C, Shen W, Xu H (2018) Catal Commun 114:28–32Google Scholar
  46. 46.
    Li J, Ma H, Chen Y, Xu Z, Li C, Ying W (2018) Chem Commun 54(47):6032–6035Google Scholar
  47. 47.
    Rahmani M, Taghizadeh M (2017) Reac Kinet Mech Catal 122(1):409–432Google Scholar
  48. 48.
    Lee YJ, Kim YW, Viswanadham N, Jun KW, Bae JW (2010) Appl Catal A 374:18–25Google Scholar
  49. 49.
    Moreno-Piraján JC, Garcia-Cuello VS, Giraldo L (2010) J Thermodyn Catal 1:101Google Scholar
  50. 50.
    Zhang SL, Zhang LL, Wang WG, Min YY, Tong M, Yu S, Yan-Jun G, Tao D (2014) Acta Phys Chim Sin 30:535–543Google Scholar
  51. 51.
    Aina X, Hongfang M, Haitao Z, Weiyong Y, Dingye F (2013) World Acad Sci Eng Technol 7:28Google Scholar
  52. 52.
    Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Microporous Mesoporous Mater 203:41–53Google Scholar
  53. 53.
    Yang Y, Chao S, Junming D, Yinhong Y, Weiming H, Chunlei Z, Wei S, Hualong X (2012) Catal Commun 24:44–47Google Scholar
  54. 54.
    Vu DV, Hirota Y, Nishiyama N, Egashira Y, Ueyama K (2010) J Jpn Pet Inst 53:232–238Google Scholar
  55. 55.
    Wang L, Wang Z, Liangcheng AN, Yong X, Luo C (2013) Acta Pet Sinica Pet Process 29:597–604Google Scholar
  56. 56.
    Zhao X, Hong Y, Wang L, Fan D, Yan N, Liu X, Tian P, Guo X, Liu Z (2018) Chin J Catal 39(8):1418–1426Google Scholar
  57. 57.
    Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2018) Micro Meso Mat 263:243–250Google Scholar
  58. 58.
    Lee KY, Lee SW, Ihm SK (2014) Ind Eng Chem Res 53:10072–10079Google Scholar
  59. 59.
    Jin Y, Asaoka S, Zhang S, Li P, Zhao S (2013) Fuel Proc Technol 115:34–41Google Scholar
  60. 60.
    Wei RC, Li CY, Yang CH, Shan HH (2011) J Natural Gas Chemistry 20:261–265Google Scholar
  61. 61.
    Mao DS, Guo QS, Meng T (2010) Acta Phys Chim Sin 26:2242–2248Google Scholar
  62. 62.
    Goetze J, Weckhuysen BM (2018) Catal Sci Technol 8(6):1632–1644Google Scholar
  63. 63.
    Gong T, Zhang X, Bai T, Zhang QQ, Tao L, Qi M, Duan C (2012) Ind Eng Chem Res 51:13589–13598Google Scholar
  64. 64.
    Zhang H, Liu H, Jiang Y, Chang X, Yuan K, Wang B, Guo Y, Meng S (2014) Adv Mater Res 13:476–480Google Scholar
  65. 65.
    Hadi N, Niaei A, Nabavi SR, Farzi A, Shirazi MN (2014) Chem Biochem Eng Q 28:53–63Google Scholar
  66. 66.
    Zhang SH, Zhang BL, Gao ZX, Han YZ (2010) Reac Kinet Mech Catal 99:447–453Google Scholar
  67. 67.
    Nieskens DLS, Ferrar D, Liu Y, de Putter SA (2014) Ind Eng Chem Res 53:10892–10898Google Scholar
  68. 68.
    Rostamizadeh M, Taeb A (2015) J Ind Eng Chem 27:297–306Google Scholar
  69. 69.
    Hadi N, Niaei A, Nabavi SR (2016) J Taiwan Inst Chem Eng 59:173–185Google Scholar
  70. 70.
    Sun C, Yang YS, Du JM, Qin F, Liu ZP, Shen W, Xu HL, Tang Y (2012) Chem Commun 48:5787–5789Google Scholar
  71. 71.
    Papari S, Mohammadrezaei A, Asadi M, Golhosseini R, Naderifar A (2011) Catal Commun 16:150–154Google Scholar
  72. 72.
    Zhang HR, Ning ZX, Liu H (2017) RSC Adv 7(27):16602–16607Google Scholar
  73. 73.
    Zhang HR, Ning ZX, Shang JP (2017) Microporous Mesoporous Mater 248:173–178Google Scholar
  74. 74.
    Hadi N, Niaei A, Alizadeh R (2018) C R Chim 21(5):523–540Google Scholar
  75. 75.
    Shareh FB, Kazemeini M, Asadi M, Fattahi M (2014) Pet Sci Technol 32:1349–1356Google Scholar
  76. 76.
    Si H, Yanjun G, Qinghu X, Xiaoling L, Qing Z, Lanlan Z, Tao D (2012) Catal Commun 28:95–99Google Scholar
  77. 77.
    Hussain ST, Mazhar M, Gul S, Chuang KT, Sanger AR (2006) Bull Korean Chem Soc 27:1844–1850Google Scholar
  78. 78.
    Meng X, Chen C, Liu J, Zhang Q, Li C, Cui Q (2016) Appl Petrochem Res 6:41–47PubMedGoogle Scholar
  79. 79.
    Taniguchi T, Nakasaka Y, Yoneta K (2016) Catal Lett 146(3):666–676Google Scholar
  80. 80.
    Rashidi H, Shariati A, Khosravi-Nikou MR (2016) Korean J Chem Eng 33(8):2319–2324Google Scholar
  81. 81.
    Yoshioka M, Yokoi T, Tatsumi T (2015) ACS Catal 57:4268–4275Google Scholar
  82. 82.
    Molino KA, Łukaszuk D, Rojo-Gama KP, Lillerud U, Olsbye S, Bordiga SS, Beato P (2017) Chem Commun 53:6816Google Scholar
  83. 83.
    Ivanova S, Louis B, Madani B, Tessonnier JP, Ledoux MJ, Pham-Huu C (2007) J Phys Chem 111(11):4368–4374Google Scholar
  84. 84.
    Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM (2010) Chem Eng J 161(3):397–402Google Scholar
  85. 85.
    Iglesia O, Sebastián V, Mallada R, Nikolaidis G, Coronas J, Kolb G, Zapf R, Hessel V, Santamaría J (2007) Catal Today 125:2–10Google Scholar
  86. 86.
    Yang GH, Zhang XF, Liu SQ, Yeung KL, Wang JQ (2007) J Phys Chem Solids 68:26–31Google Scholar
  87. 87.
    Scheffler F (2008) Ceram Forum Int 85(3):E45–E50Google Scholar
  88. 88.
    Yao JF, Zeng CF, Zhang LX, Xu NP (2008) Mater Chem Phys 112(2):637–640Google Scholar
  89. 89.
    Perdana I, Creaser D, Bendiyasa IM, Tyoso BW (2007) Chem Eng Sci 62:3882–3893Google Scholar
  90. 90.
    Jiao Y, Jiang C, Yang Z, Zhang J (2012) Microporous Mesoporous Mater 162:152–158Google Scholar
  91. 91.
    Zampieri A, Kullmann S, Selvam T, Bauer J, Schwieger W, Sieber H, Fey T, Greil P (2006) Microporous Mesoporous Mater 90:162–174Google Scholar
  92. 92.
    Lacroix M, Nguyen P, Schweich D, Pham-Huu C, Savin-Poncet S, Edouard D (2007) Chem Eng Sci 62:3259–3267Google Scholar
  93. 93.
    Betke U, Lieb A (2018) Adv Eng Mater 20:1800252Google Scholar
  94. 94.
    Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B (2009) J Catal 265:1–7Google Scholar
  95. 95.
    Yilai J, Chunhai J, Zhenming Y, Jian L, Jinsong Z (2013) Microporous Mesoporous Mater 181:201–207Google Scholar
  96. 96.
    Yilai J, Xiaodan Y, Chunhai J, Chong T, Zhenming Y, Jinsong Z (2015) J Catal 332:70–76Google Scholar
  97. 97.
    Jiao Y, Fan X, Perdjon M (2017) Appl Catal A 545:104–112Google Scholar
  98. 98.
    Jiao Y, Xu S, Jiang C (2018) Appl Catal A 559:1–9Google Scholar
  99. 99.
    Patcas FC (2005) J Catal 231:194–200Google Scholar
  100. 100.
    Wang XY, Wen M, Wang CZ, Ding J, Sun Y, Liu Y, Lu Y (2014) Chem Commun 50:6343–6345Google Scholar
  101. 101.
    Guo W, Wu W, Luo X, Man X (2013) Fuel Process Technol 108:133–138Google Scholar
  102. 102.
    Guo WY, Xiao WD, Luo M (2012) Chem Eng J 207:734–745Google Scholar
  103. 103.
    Lee YJ, Kim YW, Jun KW, Viswanadham N, Bae JW, Park HS (2009) Catal Lett 129:408–415Google Scholar
  104. 104.
    Ding J, Zhang Z, Lupeng H, Chunzheng W, Pengjing C, Guofeng Z, Ye L, Yong L (2016) RSC Adv 6(10):1039Google Scholar
  105. 105.
    Ding J, Yingshuai J, Pengjing C, Guofeng Z, Ye L, Yong L (2018) Microporous Mesoporous Mater 261:1–8Google Scholar
  106. 106.
    Wen M, Wang X, Han L, Ding J, Sun Y, Liu Y, Lu Y (2015) Micro Meso Mat 206:8–16Google Scholar
  107. 107.
    Wen M, Ding J, Wang C (2016) Microporous Mesoporous Mater 221:187–196Google Scholar
  108. 108.
    Ding J, Chen P, Guofeng Z (2018) J Catal 360:40–50Google Scholar
  109. 109.
    Ding J, Songyu F, Pengjing C, Tao D, Ye L, Yong L (2017) Catal Sci Tech 7(10):2087–2100Google Scholar
  110. 110.
    Lefevere J, Mullens S, Meynen S, Noyen JV (2014) Chem Pap 68(9):143–1153Google Scholar
  111. 111.
    Lefevere J, Gysen M, Mullens S, Meynen Noyen JV (2013) Catal Today 216:18–23Google Scholar
  112. 112.
    Lønstad BF, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Appl Catal A 447:178–185Google Scholar
  113. 113.
    Ali MA, Al-Baghli NA, Nisar M, Malaibari ZO, Abutaleb A, Ahmed S (2019) Energy Fuels 33(2):1458–1466Google Scholar
  114. 114.
    Ali MA, Ahmed S (2017) US Patent 9845271Google Scholar
  115. 115.
    Ali MA, Ahmed S (2017) US Patent 9738570Google Scholar
  116. 116.
    Ali MA, Ahmed S (2017) US Patent 9682367Google Scholar
  117. 117.
    Ali MA, Ahmed S (2017) US Patent 9675971Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Ashraf Ali
    • 1
    Email author
  • Shakeel Ahmed
    • 2
  • Nadhir Al-Baghli
    • 3
  • Zuhair Malaibari
    • 3
  • Ahmed Abutaleb
    • 1
  • Ayman Yousef
    • 1
    • 4
  1. 1.Chemical Engineering Department, College of EngineeringJazan UniversityJazanSaudi Arabia
  2. 2.Center for Refining and Petrochemicals, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Department of Mathematics and Physics Engineering, Faculty of Engineering in MatteriaHelwan UniversityCairoEgypt

Personalised recommendations