Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3384–3394 | Cite as

Magnetic BaFe12O19/Al2O3: An Efficient Heterogeneous Lewis Acid Catalyst for the Synthesis of α-Aminophosphonates (Kabachnik–Fields Reaction)

  • Tayebeh Piri
  • Reza Peymanfar
  • Shahrzad JavanshirEmail author
  • Sara Amirnejat
Article
  • 68 Downloads

Abstract

The design and application of environmentally friendly catalysts to reduce the quantity of toxic wastes is critical for improving the chemical synthesis process. Therefore, BaFe12O19/Al2O3, a magnetic mesoporous nanocomposites, were designed synthesized and characterized using different techniques such as energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) adsorption method, and vibrating sample magnetometry (VSM). The prepared BaFe12O19/Al2O3 display a high surface area (1773.22 m2/g) with an average pore diameter of 3.946 nm from nitrogen sorption analysis. In addition, the synthesized nanocomposites prove to be an active heterogeneous Lewis acid catalyst for the solvent free synthesis of α-aminophosphonates at ambient temperature, through three-component reaction of aldehydes/ketones, amines and triethyl phosphite. The use of this catalyst results in an effortless magnetic recoverability and recyclability, high yield and short reaction time under solvent-free conditions.

Graphic Abstract

Keywords

Heterogeneous catalysis Amination Magnetic separation Mesoporous materials Lewis acid Kabachnik–fields reaction 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Research Council of the Iran University of Science and Technology, Tehran, IRAN.

Supplementary material

10562_2019_2910_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1665 kb)

References

  1. 1.
    Maung JP, Mallari TA, Girtsman LYWu, Rowley JA, Santiago NM, Brunelle AN, Berkman CE (2004) Bioorg Med Chem 12:4969–4979CrossRefGoogle Scholar
  2. 2.
    Christianson DW, Lipscomb WN (1988) J Am Chem Soc 110:5560–5565CrossRefGoogle Scholar
  3. 3.
    Moonen K, Laureyn I, Stevens CV (2004) Chem Rev 104:6177–6216CrossRefGoogle Scholar
  4. 4.
    Rodriguez CE, Lu H, Martinez AR, Hu Y, Brunelle A, Berkman CE (2001) J Enzym Inhib Med Chem 16:359–365Google Scholar
  5. 5.
    Sheridan RP (2002) J Chem Inform Comput Sci 42:103–108CrossRefGoogle Scholar
  6. 6.
    Rostamnia S, Xin H, Nouruzi N (2013) Microporous Mesoporous Mater 179:99–103CrossRefGoogle Scholar
  7. 7.
    Kafarski P, Górniak MG, Andrasiak I (2015) Curr. Green Chem 5:218–222CrossRefGoogle Scholar
  8. 8.
    Keglevich G, Bálint E (2012) Molecules 17:12821–12835CrossRefGoogle Scholar
  9. 9.
    Reddy MV, Dindulkar SD, Jeong YT (2011) Tetrahedron Lett 52:4764–4767CrossRefGoogle Scholar
  10. 10.
    Varalakshmi M, Srinivasulu D, Rajasekhar D, Raju CN, Sreevani S (2014) Phosphorus. Sulfur Silicon Relat Elem 189:106–112CrossRefGoogle Scholar
  11. 11.
    Essid I, Touil S (2017) Curr Org Synth 14(2017):272–278CrossRefGoogle Scholar
  12. 12.
    Farahani N, Akbari J (2017) Lett Org Chem 14:483–487CrossRefGoogle Scholar
  13. 13.
    da Silva CD, Oliveira AR, Rocha MP, Katla R, Botero ER, da Silva ÉC, Domingues NLC (2016) RSC Adv 6:27213–27219CrossRefGoogle Scholar
  14. 14.
    Trueba M, Trasatti SP (2005) Eur J Inorg Chem 2005:3393–3403CrossRefGoogle Scholar
  15. 15.
    Wilson K, Clark JH (2000) Pure Appl Chem 72:1313–1319CrossRefGoogle Scholar
  16. 16.
    Peymanfar R, Rahmanisaghieh M (2018) Mater Res Express 5:105012CrossRefGoogle Scholar
  17. 17.
    Jafari AA, Amini S, Tamaddon F (2013) JICS 10:677–684CrossRefGoogle Scholar
  18. 18.
    Quin LD (2000) A guide to organophosphorus chemistry. John Wiley & Sons, New JerseyGoogle Scholar
  19. 19.
    Peng H, Sun S, Hu Y, Xing R, Fang D (2015) Heteroat Chem 26:215–223CrossRefGoogle Scholar
  20. 20.
    Ghafuri H, Rashidizadeh A, Zand HRE (2016) RSC Adv 6:16046–16054CrossRefGoogle Scholar
  21. 21.
    Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Tetrahedron 69:4708–4724CrossRefGoogle Scholar
  22. 22.
    Ranu BC, Hajra A, Jana U (1999) Org Lett 1:1141–1143CrossRefGoogle Scholar
  23. 23.
    Wang H, Deng T, Cai C (2014) J Fluor Chem 16:144–150CrossRefGoogle Scholar
  24. 24.
    Niu HY, Li HJ, Li JP, Huang Y, Mao RZ, Li DY, Qu GR, Guo HM (2011) Lett Org Chem 8:674–681CrossRefGoogle Scholar
  25. 25.
    Yadav J, Reddy B, Sreedhar P (2002) Green Chem 4:436–438CrossRefGoogle Scholar
  26. 26.
    Hosseini-Sarvari M (2008) Tetrahedron 64:5459–5466CrossRefGoogle Scholar
  27. 27.
    Kaboudin B, Nazari R (2001) Tetrahedron Lett 42:8211–8213CrossRefGoogle Scholar
  28. 28.
    Chinthaparthi RR, Bhatnagar I, Gangireddy CSR, Syama SC, Cirandur SR (2013) Arch Pharm 346:667–676CrossRefGoogle Scholar
  29. 29.
    Sobhani S, Falatooni ZM, Honarmand M (2014) RSC Adv 4(30):15797–15806CrossRefGoogle Scholar
  30. 30.
    Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Tetrahedron 69:1–17CrossRefGoogle Scholar
  31. 31.
    Jafari AA, Nazarpour M, Abdollahi-Alibeik M (2010) Heteroatom Chem 21:397–403CrossRefGoogle Scholar
  32. 32.
    Cherkasov RA, Galkin VI (1998) Russ Chem Rev 67:940–968Google Scholar
  33. 33.
    Galkina IV, Sobanov AA, Galkin VI, Cherkasov RA (1998) Russ J Gen Chem 68:1465–1468Google Scholar
  34. 34.
    Galkina IV, Galkin VI, Cherkasov RA (1998) Russ J Gen Chem 68:1402–1407Google Scholar
  35. 35.
    Dimukhametov MN, Bayandina EV, Davydova EY, Gubaidullin AT, Litvinov IA, Alfonsov VA (2003) Mendeleev Commun 13:150–151CrossRefGoogle Scholar
  36. 36.
    Matveeva ED, Zefirov NS (2008) Dokl Akad Nauk SSSR 420:492–495Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Heterocyclic Chemistry Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations