Catalysis Letters

, Volume 149, Issue 12, pp 3501–3507 | Cite as

Synthesis, Characterization and Catalytic Application of Starch Supported Cuprous Iodide Nanoparticles

  • Sadhucharan Mallick
  • Priyabrata Mukhi
  • Poonam Kumari
  • Kumari Reshmi Mahato
  • Suryadev Kumar Verma
  • Debjit DasEmail author


The starch supported cuprous iodide nanoparticles (CuI-NPs@Starch) were synthesized in aqueous medium and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy and atomic absorption spectra analysis. The newly synthesized CuI NPs on starch have been demonstrated first time as an efficient catalyst for the regioselective 3-allylation reaction of N-substituted indoles as well as ring-substituted indoles using various allyl alcohols under moisture and air insensitive conditions.

Graphic Abstract


Nanocatalysis CuI NPs Allylation Indole Allylic alcohol 



D.D. acknowledges the financial support (project ref. No. YSS/2015/001425) from Science & Engineering Research Board (SERB), New Delhi. Also, D.D. is highly grateful to Dr. Asish Kumar Dey (Principal, TDB College, Raniganj) for support and encouragement.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2909_MOESM1_ESM.docx (669 kb)
Supplementary material 1 (DOCX 668 kb)


  1. 1.
    Corain B, Schmid G, Toshima N (eds) (2007) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Feldheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Dong X, Gao Z, Yang K, Zhang W, Xu L (2015) Catal Sci Technol 5:2554CrossRefGoogle Scholar
  4. 4.
    Cong H, Porco JA (2012) ACS Catal 2:65CrossRefGoogle Scholar
  5. 5.
    Yan N, Xiao C, Kou Y (2010) Coord Chem Rev 254:1179CrossRefGoogle Scholar
  6. 6.
    Gawande MB, Goswami A, Felpin F, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Chem Rev 116:3722CrossRefGoogle Scholar
  7. 7.
    Das D (2016) ChemistrySelect 1:1959CrossRefGoogle Scholar
  8. 8.
    Ranu BC, Dey R, Chatterjee T, Ahammed S (2012) ChemSusChem 5:22CrossRefGoogle Scholar
  9. 9.
    Babu SG, Karvembu R (2013) Catal Surv Asia 17:156CrossRefGoogle Scholar
  10. 10.
    Dutta PK, Sen S, Saha D, Dhar B (2018) Eur J Org Chem 2018:657CrossRefGoogle Scholar
  11. 11.
    Sreedhar B, Arundhathi R, Reddy PL, Kantam ML (2009) J Org Chem 74:7951CrossRefGoogle Scholar
  12. 12.
    Xu H, Liang Y, Cai Z, Qi H, Yang C, Feng Y (2011) J Org Chem 76:2296CrossRefGoogle Scholar
  13. 13.
    Safaei-Ghomi J, Akbarzadeh Z, Ziarati A (2014) RSC Adv 4:16385CrossRefGoogle Scholar
  14. 14.
    Srivastava A, Jain N (2013) Tetrahedron 69:5092CrossRefGoogle Scholar
  15. 15.
    Xu H, Liang Y, Zhou Z, Feng Y (2012) Org Biomol Chem 10:2562CrossRefGoogle Scholar
  16. 16.
    Safaei-Ghomi J, Akbarzadeh Z (2015) Ultrason Sonochem 22:365CrossRefGoogle Scholar
  17. 17.
    Guo X, Wang L, Hu J, Zhang M (2018) RSC Adv 8:22259CrossRefGoogle Scholar
  18. 18.
    Dutta PK, Dhar B, Sen S (2018) New J Chem 42:12062CrossRefGoogle Scholar
  19. 19.
    Shahbazi S, Afshar S (2014) Mater Lett 115:190CrossRefGoogle Scholar
  20. 20.
    Wang X, Hu P, Xue F, Wei Y (2014) Carbohydr Polym 114:476CrossRefGoogle Scholar
  21. 21.
    Yi S, Lee D, Sin E, Lee Y (2007) Tetrahedron Lett 48:6771CrossRefGoogle Scholar
  22. 22.
    Hardy JJ, Hubert S, Macquarrie DJ, Wilson AJ (2004) Green Chem 6:53CrossRefGoogle Scholar
  23. 23.
    Chavan PV, Pandit KS, Desai UV, Kulkarnia MA, Wadgaonkar PP (2014) RSC Adv 4:42137CrossRefGoogle Scholar
  24. 24.
    Gholinejad M, Jeddi N (2014) ACS Sustain Chem Eng 2:2658CrossRefGoogle Scholar
  25. 25.
    Yang H, Fang L, Zhang M, Zhu C (2009) Eur J Org Chem 2009:666CrossRefGoogle Scholar
  26. 26.
    Gruber S, Zaitsev AB, Wörle M, Pregosin PS (2008) Organometallics 27:3796CrossRefGoogle Scholar
  27. 27.
    Das D, Roy S (2013) Adv Synth Catal 355:1308CrossRefGoogle Scholar
  28. 28.
    Trillo P, Baeza A, Nájera C (2012) Eur J Org Chem 2012:2929. CrossRefGoogle Scholar
  29. 29.
    Yasuda M, Somyo T, Baba A (2006) Angew Chem Int Ed 45:793CrossRefGoogle Scholar
  30. 30.
    Fan G, Liua Z, Wang G (2013) Green Chem 15:1659CrossRefGoogle Scholar
  31. 31.
    Das D, Pratihar S, Roy UK, Mal D, Roy S (2012) Org Biomol Chem 10:4537CrossRefGoogle Scholar
  32. 32.
    Yadav JS, Reddy BVS, Reddy AS (2008) J Mol Catal A 280:219CrossRefGoogle Scholar
  33. 33.
    Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F (2006) Adv Synth Catal 348:1841CrossRefGoogle Scholar
  34. 34.
    Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) ACS Appl Mater Interfaces 4:1313CrossRefGoogle Scholar
  35. 35.
    Sundberg RJ (1996) Indoles. Academic Press, San DiegoGoogle Scholar
  36. 36.
    Sundberg RJ (1970) The chemistry of indole. Academic Press, New YorkGoogle Scholar
  37. 37.
    Bandini M, Eichholzer A (2009) Angew Chem Int Ed 48:9608 and references therein CrossRefGoogle Scholar
  38. 38.
    Chatterjee PN, Roy S (2010) J Org Chem 75:4413CrossRefGoogle Scholar
  39. 39.
    Sibi MP, Cook GR (2000) In: Yamamoto H (ed) Lewis acids in organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndira Gandhi National Tribal UniversityAmarkantakIndia
  2. 2.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia
  3. 3.Centre for Applied ChemistryCentral University of JharkhandRanchiIndia
  4. 4.Department of ChemistryTriveni Devi Bhalotia CollegeRaniganjIndia

Personalised recommendations