Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3425–3431 | Cite as

A New Class of Pyridine-Amide Containing Ti and Zr Based Catalysts for Olefin Polymerization: Influence of Ligand Substituents

  • Anurag Mishra
  • Hiren Bhajiwala
  • Ajay Kothari
  • Virendra Kumar GuptaEmail author
Article
  • 121 Downloads

Abstract

Two tridendate pyridine-amide ligands in di-deprotonated form have been used to synthesize new titanium and zirconium complexes. The molecular structure of pentafluoro containing Titanium and Zirconium complexes were determined by DFT calculations. These new metal complexes have been further evaluated for ethylene polymerization activity in the presence of co-catalyst methylaluminoxane (MAO) under atmospheric pressure, producing polyethylenes with moderate molecular weights and unimodal molecular weight distribution. Remarkably, zirconium complexes show higher activity than titanium complexes under the same polymerization condition. The catalytic activity of all the complexes were found to be temperature dependent and reach their highest efficiency at 70 °C. The influence of the nature of the ligands and reaction parameters upon the catalytic activities has been studied. Additionally, the pentafluoro containing Zirconium and Titanium complexes were further evaluated for the copolymerization of ethylene and propylene and exhibited good catalytic activity.

Graphic Abstract

A new class of titanium and zirconium based metal complexes were synthesised from pyridine-amide containing ligands. The synthesised complexes have been evaluated for ethylene polymerization in the presence of co-catalyst methylaluminoxane (MAO) under atmospheric pressure. Interestingly, zirconium complexes show high catalytic activities than titanium complexes under the same polymerization condition.

Keywords

Titanium complexes Zirconium complexes Coordination complexes Ethylene polymerization Pyridine-amide ligand 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2907_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1824 kb)

References

  1. 1.
    Rajput A, Mukherjee R (2013) Coord Chem Rev 257:350Google Scholar
  2. 2.
    Rose MJ, Mascharak PK (2008) Coord Chem Rev 252:2093PubMedPubMedCentralGoogle Scholar
  3. 3.
    Mishra A, Gupta R (2014) Dalton Trans 43:7668PubMedGoogle Scholar
  4. 4.
    Mishra A, Kang SC, Chi K-W (2013) Eur J Inorg Chem 30:5222–5232Google Scholar
  5. 5.
    Ray M, Ghosh D, Shirin Z, Mukherjee R (1997) Inorg Chem 36:3568PubMedGoogle Scholar
  6. 6.
    Mishra A, Lee S, Kim H, Cook TR, Stang PJ, Chi K-W (2012) Chem Asian J 7:2592PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mishra A, Jung H, Lee MH, Lah MS, Chi K-W (2013) Inorg Chem 52:8573PubMedGoogle Scholar
  8. 8.
    Mishra A, Ravikumar S, Hong SH, Kim H, Vajpayee V, Lee HW, Ahn BC, Wang M, Stang PJ, Chi K-W (2011) Organometallics 30:6343PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mishra A, Lee SC, Kaushik N, Cook TR, Choi EH, Kaushik NK, Stang PJ, Chi K-W (2014) Chem Eur J 20:14410PubMedGoogle Scholar
  10. 10.
    Mishra A, Ravikumar S, Song Y, Prabhu NS, Hong SH, Kim H, Cheon S, Noh J, Chi K-W (2014) Dalton Trans 43:6032PubMedGoogle Scholar
  11. 11.
    Mishra A, Jeong YJ, Jo J-H, Kang SC, Kim H, Chi K-W (2014) Organometallics 33:1144Google Scholar
  12. 12.
    Mishra A, Jeong YJ, Jo J-H, Kang SC, Lah MS, Chi K-W (2014) ChemBioChem 15:695PubMedGoogle Scholar
  13. 13.
    Mishra A, Ali A, Upreti S, Whittingham MS, Gupta R (2009) Inorg Chem 48:5234PubMedGoogle Scholar
  14. 14.
    Mishra A, Kaushik NK, Verma AK, Gupta R (2008) Eur J Med Chem 43:2189PubMedGoogle Scholar
  15. 15.
    Mishra A, Jo J-H, Kim H, Woo S, Chi K-W (2014) ChemPlusChem 79:925Google Scholar
  16. 16.
    Srivastava S, Dagur MS, Ali A, Gupta R (2015) Dalton Trans 44:17453PubMedGoogle Scholar
  17. 17.
    Jacob W, Mukherjee R (2006) Inorg Chim Acta 359:4565Google Scholar
  18. 18.
    Marcos D, Folgado JV, Beletran-Porter D, Prado-Gambardella D, Pulcinelli SH, De Almeida-Santos RH (1990) Polyhedron 9:2699Google Scholar
  19. 19.
    Kumar S, Munjal M, Singh J, Gupta R (2014) Eur J Inorg Chem 29:4957–4965Google Scholar
  20. 20.
    Marcos D, Martınez-Manez R, Folgado JV, Beltra-Porter D, Fuertes A (1989) Inorg Chim Acta 159:11Google Scholar
  21. 21.
    Das A, Peng S-M, Lee G-H, Bhattacharya S (2004) New J Chem 28:712Google Scholar
  22. 22.
    Mishra A, Prabhu P, Gocher C, Gupta V (2019) ChemistrySelect 4:3286Google Scholar
  23. 23.
    Makio H, Terao H, Iwashita A, Fujita T (2011) Chem Rev 111:2363PubMedGoogle Scholar
  24. 24.
    Nomura K, Liu J, Padmanabhan S, Kitiyanan BJ (2007) Mol Catal A Chem 267:1Google Scholar
  25. 25.
    Murray RE, George VM, Nowlin DL, Schultz CC, Petersen JL (2002) Polym Prepr 43:294Google Scholar
  26. 26.
    Scollard JD, McConville DH (1996) J Am Chem Soc 118:10008Google Scholar
  27. 27.
    Terao H, Iwashita A, Matsukawa N, Ishii S, Mitani M, Tanaka H, Nakano T, Fujita T (2011) ACS Catal 1:254Google Scholar
  28. 28.
    Li H, Xu B, He J, Liu X, Gao W, Mu Y (2015) Chem Commun 51:16703Google Scholar
  29. 29.
    Cozzi PG, Gallo E, Floriani C, Chiesi-Villa A, Rizzoli C (1995) Organometallics 14:4994Google Scholar
  30. 30.
    Gao Y, Aidan R, Mouat A, Motta A, Macchioni C, Zuccaccia, Delferro M, Marks TJ (2015) ACS Catal 5:5272Google Scholar
  31. 31.
    Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Murphy V, Shoemaker JAW, Turner H, Rosen RK, Stevens JC, Alfano F, Busico V, Cipullo R, Talarico G (2006) Angew Chem Int Ed 45:3278Google Scholar
  32. 32.
    Gurubasavaraj PM, Nomura K (2010) Organometallics 29:3500Google Scholar
  33. 33.
    Tewasekson U, Tsutsumi K, Nomura K (2016) Organometallics 35:866Google Scholar
  34. 34.
    Takii Y, Inagaki A, Nomura K (2013) Dalton Trans 42:11632PubMedGoogle Scholar
  35. 35.
    Xu W, Guo Y, Wei Y, Fu Z, Fan Z (2019) Catal Commun 120:6Google Scholar
  36. 36.
    Bergamo AL, das Chagas RP, de Casagrande L (2013) Catal Commun 42:113Google Scholar
  37. 37.
    Resconi L, Camurati I, Sudmeijer O (1999) Top Catal 7:145Google Scholar
  38. 38.
    Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Chem Rev 100:1253PubMedGoogle Scholar
  39. 39.
    Talarico G, Budzelaar PHM (2006) J Am Chem Soc 128:4524PubMedGoogle Scholar
  40. 40.
    Wright LA, Hope EG, Solan GA, Cross WB, Singh K (2016) Organometallics 35:1183Google Scholar
  41. 41.
    Ayoub ED, Takase MK, Henling LM, Labinger JA, Bercaw JE (2015) Organometallics 34:4707Google Scholar
  42. 42.
    Golisz SR, Bercaw JE (2009) Macromolecules 42:8751Google Scholar
  43. 43.
    Mishra A, Ali A, Upreti S, Gupta R (2008) Inorg Chem 47:154PubMedGoogle Scholar
  44. 44.
    Frisch MJ, Truncks GW, Schlegel HB (2007) GAUSSIAN 03, Revision E.01, Gaussian: Wallingford, CTGoogle Scholar
  45. 45.
    Britovsek JP, Gibson VC, Hoarau OD, Spitzmesser SK, White AJP, Williams DJ (2003) Inorg Chem 42:3454PubMedGoogle Scholar
  46. 46.
    Kaji A, Akimoto Y, Murano M (1991) J Polym Sci A 29:1987Google Scholar
  47. 47.
    Stürzel M, Mihan S, Mülhaupt R (2016) Chem Rev 116:1398PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anurag Mishra
    • 1
  • Hiren Bhajiwala
    • 1
  • Ajay Kothari
    • 1
  • Virendra Kumar Gupta
    • 1
    Email author
  1. 1.Polymer Synthesis & Catalysis Group, Reliance Research and Development CenterReliance Industries LtdNavi MumbaiIndia

Personalised recommendations