Catalysis Letters

, Volume 149, Issue 12, pp 3525–3542 | Cite as

Magnetically Separable Zinc Ferrite Nanocatalyst for an Effective Biodiesel Production from Waste Cooking Oil

  • A. Ashok
  • L. John KennedyEmail author


ZnFe2O4 nanocatalysts synthesized by microwave combustion method is employed for biodiesel production from waste cooking oil (WCO). The zinc ferrite samples are prepared by varying the microwave power from 500 to 1500 W. The nanocatalysts are characterized by XRD, FTIR, DRS, HR-SEM and VSM techniques. Transesterification of WCO are investigated and maximum biodiesel yield of 98.6% is achieved with 4 wt% of ZnFe2O4 nanocatalyst (ZF-1500 sample), methanol/oil molar ratio of 21:1, reaction temperature about 60 °C and reaction time 1 h. The nanocatalyst (ZnFe2O4) was reused at least for 10 times. The activation energy (Ea) and frequency factor (A) is calculated to be 59.4 kJ mol−1 and 1.66 × 108 min−1 respectively. The thermodynamic parameters ∆H and ∆S were found to be 88.76 kJ mol−1 and − 0.096 kJ mol−1 K−1. The positive values of ∆G for transesterification process is found to be non-spontaneous and endergonic.

Graphic Abstract


Biodiesel production Transesterification Heterogeneous catalysis Spinels 



Waste cooking oil


Zinc ferrite using 500 W


Zinc ferrite using 600 W


Zinc ferrite using 900 W


Zinc ferrite using 1200 W


Zinc ferrite using 1500 W


X-ray diffraction


Fourier transformed infrared


High resolution scanning electron microscopy


Diffuse reflectance spectroscopy


Vibrating sample magnetometer


Gas chromatography mass spectroscopy


Fatty acid methyl ester



All the authors sincerely thank VIT Chennai Campus, Chennai, Tamil Nadu, India, for providing financial assistance through research associateship to the first author.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Xiang Y, Xiang Y, Wang L (2017) Microwave radiation improves biodiesel yields from waste cooking oil in the presence of modified coal fly ash. J Taibah Univ Sci 11:1019–1029CrossRefGoogle Scholar
  2. 2.
    Silitonga AS, Masjuki HH, Mahlia TMI et al (2013) Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Conversat Manag 76:828–836CrossRefGoogle Scholar
  3. 3.
    Yaakob Z, Mohammad M, Alherbawi M et al (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energy Rev 18:184–193CrossRefGoogle Scholar
  4. 4.
    Pukale DD, Maddikeri GL, Gogate PR et al (2015) Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason Sonochem 22:278–286CrossRefGoogle Scholar
  5. 5.
    Thitsartarn W, Maneerung T, Kawi S (2015) Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production. Energy 89:946–956CrossRefGoogle Scholar
  6. 6.
    Torres-Rodríguez DA, Romero-Ibarra IC, Ibarra IA et al (2016) Biodiesel production from soybean and jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renew Energy 93:323–331CrossRefGoogle Scholar
  7. 7.
    Duarte JG, Leone-Ignacio K, Da Silva JAC et al (2016) Rapid determination of the synthetic activity of lipases/esterases via transesterification and esterification zymography. Fuel 177:123–129CrossRefGoogle Scholar
  8. 8.
    Thanh LT, Okitsu K, Van Boi L et al (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2:191–222CrossRefGoogle Scholar
  9. 9.
    Varghese R, Henry JP, Irudayaraj J (2017) Ultrasonication-assisted transesterification for biodiesel production by using heterogeneous ZnO nanocatalyst. Env Program Sustain Energy 37:1176–1182CrossRefGoogle Scholar
  10. 10.
    Anand GT, Kennedy LJ, Vijaya JJ et al (2014) Structural, optical and magnetic characterization of Zn1−xNixAl2O4 (0 ≤ x ≤ 5) spinel nanostructures synthesized by microwave combustion technique. Ceram Int 41:603–615CrossRefGoogle Scholar
  11. 11.
    Theophil Anand G, John Kennedy L, Aruldoss U et al (2015) Structural, optical and magnetic properties of Zn1−xMnxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures by one-pot microwave combustion technique. J Mol Struct 1084:244–253CrossRefGoogle Scholar
  12. 12.
    Sundararajan M, Kennedy LJ, Aruldoss U et al (2015) Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater Sci Semicond Process 40:1–10CrossRefGoogle Scholar
  13. 13.
    Ding J, Xia Z, Lu J (2012) Esterification and deacidification of a waste cooking oil (TAN 68.81 mg KOH/g) for biodiesel production. Energies 5:2683–2691CrossRefGoogle Scholar
  14. 14.
    Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831CrossRefGoogle Scholar
  15. 15.
    Baskar G, Gurugulladevi A, Nishanthini T et al (2017) Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew Energy 103:641–646CrossRefGoogle Scholar
  16. 16.
    Mueller F, Bresser D, Paillard E et al (2013) Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J Power Sources 236:87–94CrossRefGoogle Scholar
  17. 17.
    Wiriya N, Bootchanont A, Maensiri S et al (2014) Magnetic properties of Zn1−xMnxFe2O4 nanoparticles prepared by hydrothermal method. Microelectron Eng 126:1–8CrossRefGoogle Scholar
  18. 18.
    Kombaiah K, Vijaya JJ, Kennedy LJ et al (2017) Optical, magnetic and structural properties of ZnFe2O4 nanoparticles synthesized by conventional and microwave assisted combustion method: a comparative investigation. Optik (Stuttg) 129:57–68CrossRefGoogle Scholar
  19. 19.
    Ferrari S, Kumar RS, Grinblat F et al (2016) In-situ high-pressure X-ray diffraction study of zinc ferrite nanoparticles. Solid State Sci 56:68–72CrossRefGoogle Scholar
  20. 20.
    Shoushtari MZ, Emami A, Ghahfarokhi SEM (2016) Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method. J Magn Magn Mater 419:572–579CrossRefGoogle Scholar
  21. 21.
    Iqubal MA, Sharma R, Kamaluddin (2015) Studies on interaction of ribonucleotides with zinc ferrite nanoparticles using spectroscopic and microscopic techniques. Karbala Int J Mod Sci 1:49–59CrossRefGoogle Scholar
  22. 22.
    Vinosha PA, Mely LA, Jeronsia JE et al (2017) Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg) 134:99–108CrossRefGoogle Scholar
  23. 23.
    López F, López-Delgado A, Martı́n de Vidales J et al (1998) Synthesis of nanocrystalline zinc ferrite powders from sulphuric pickling waste water. J Alloys Compd 265:291–296CrossRefGoogle Scholar
  24. 24.
    Habibi MH, Parhizkar HJ (2014) FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim Acta Part A Mol Biomol Spectrosc 127:102–106CrossRefGoogle Scholar
  25. 25.
    Sundararajan M, Kennedy LJ, Vijaya JJ et al (2015) Microwave combustion synthesis of Co1−xZnxFe2O4 (0 ≤ x ≤ 0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 140:421–430CrossRefGoogle Scholar
  26. 26.
    Prabhakaran T, Hemalatha J (2014) Chemical control on the size and properties of nano NiFe2O4 synthesized by sol-gel autocombustion method. Ceram Int 40:3315–3324CrossRefGoogle Scholar
  27. 27.
    Chen GY, Shan R, Yan BB et al (2016) Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol. Fuel Process Technol 143:110–117CrossRefGoogle Scholar
  28. 28.
    Mazaheri H, Ong HC, Masjuki HH et al (2018) Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy 144:10–19CrossRefGoogle Scholar
  29. 29.
    Deshmane VG, Adewuyi YG (2013) Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel 107:474–482CrossRefGoogle Scholar
  30. 30.
    Tang Y, Ren H, Chang F et al (2017) Nano KF/Al2O3 particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification. RSC Adv 7:5694–5700CrossRefGoogle Scholar
  31. 31.
    Balakrishnan K, Olutoye MA, Hameed BH (2013) Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst. Bioresour Technol 128:788–791CrossRefGoogle Scholar
  32. 32.
    Farooq M, Ramli A, Subbarao D (2013) Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J Clean Prod 59:131–140CrossRefGoogle Scholar
  33. 33.
    Mazubert A, Taylor C, Aubin J et al (2014) Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresour Technol 161:270–279CrossRefGoogle Scholar
  34. 34.
    Feyzi M, Shahbazi Z (2017) Preparation, kinetic and thermodynamic studies of Al–Sr nanocatalysts for biodiesel production. J Taiwan Inst Chem Eng 71:145–155CrossRefGoogle Scholar
  35. 35.
    Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095CrossRefGoogle Scholar
  36. 36.
    Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg 35:3787–3809CrossRefGoogle Scholar
  37. 37.
    Scurrell MS (1973) Heterogeneous catalysis on metal oxides. Annu Reports Prog Chem Sect A Phys Inorg Chem 70:87–122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Division, School of Advanced SciencesVellore Institute of Technology (VIT) Chennai CampusChennaiIndia

Personalised recommendations