Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3361–3369 | Cite as

Synthesis of Aluminium Doped Na-Titanate Nanorods and Its Application as Potential CO2 Hydrogenation Catalysts

  • M. A. Guzmán-Cruz
  • Ch. Ramesh-Kumar
  • M. Acosta-Alejandro
  • D. M. Frías-Márquez
  • D. Domiguez
  • T. A. Zepeda
  • S. Fuentes-Moyado
  • J. N. Díaz de LeónEmail author
Article

Abstract

A series of Al-doped Na-TiO2 nanorods (AlTi-nR-x) varying the Al2O3/TiO2 (Al/Ti) ratio was synthesized by hydrothermal method. TEM results revealed well-defined nanorod like shape morphology. XPS results confirmed the presence of Al inside the samples and a slight increase in electron density around the Ti atom. Calcined materials were evaluated in the CO2 hydrogenation (HYD) in a continuous flow-microreactor at 280–340 °C under atmospheric pressure. Results from this work exposed that all AlTi-nR-x materials have great potential to be used as CO2 HYD catalysts. However, the best catalytic performance was obtained with the AlTi-nR-0.5 catalysts, which also displayed high selectivity (82%) towards methanol.

Graphic Abstract

Keywords

Carbon dioxide CO2 hydrogenation Methanol Hydrocarbon Sodium-alumino-titanate Nanorod 

Notes

Acknowledgements

Authors gratefully acknowledge the financial support from CONACyT, with the Grant Number 227843. Thanks to SENER CONACyT 117373 project and PAPIIT IA101018. We also thank F. Ruiz, I. Gradilla, and E. Aparicio for their expert technical assistance.

Supplementary material

10562_2019_2902_MOESM1_ESM.docx (370 kb)
Supplementary material 1 (DOCX 370 kb)

References

  1. 1.
    Sun K, Fan Z, Ye J, Yan J, Ge Q, Li Y, He W, Yang W, Liu C (2015) J CO2 Util 12:1–6Google Scholar
  2. 2.
    Chang K, Wang T, Chen JG (2017) Appl Catal B Environ 206:704–711Google Scholar
  3. 3.
    Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Chem Eng Res Des 92:2557–2567Google Scholar
  4. 4.
    Kattel S, Yan B, Yang Y, Chen JG, Liu PJ (2016) J Am Chem Soc 138:12440–12450PubMedGoogle Scholar
  5. 5.
    Xiao S, Zhang Y, Gao P, Zhong L, Li X, Zhang Z, Wang H, Wei W, Sun Y (2017) Catal Today 281:327–336Google Scholar
  6. 6.
    Li MMJ, Chen C, Ayvalı T, Suo H, Zheng J, Teixeira IF, Ye L, Zou H, Hare D, Tsang SCE (2018) ACS Catal 8:4390–4440Google Scholar
  7. 7.
    An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) J Am Chem Soc 139:3834–3840PubMedGoogle Scholar
  8. 8.
    Hartadi Y, Widmann D, Behm RJ (2016) J Catal 333:238–250Google Scholar
  9. 9.
    Xiao JP, Frauenheim T (2013) J Phys Chem C 117:1804–1808Google Scholar
  10. 10.
    Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu C (2017) Appl Catal B Environ 218:488–497Google Scholar
  11. 11.
    Nie X, Jiang X, Wang H, Luo W, Janik MJ, Chen Y, Guo X, Song C (2018) ACS Catal 8:4873–4892Google Scholar
  12. 12.
    Trenco AG, White ER, Regoutz A, Payne DJ, Shaffer MSP, Williams CK (2017) ACS Catal 7:1186–1196Google Scholar
  13. 13.
    Kattel S, Yan B, Chen JG, Liu P (2016) J Catal 343:115–126Google Scholar
  14. 14.
    Khan MU, Wang LB, Liu Z, Gao ZH, Wang SP, Li HL, Zhang WB, Wang ML, Wang ZF, Ma C, Zeng J (2016) Angew Chem Int Ed 55:9548–9552Google Scholar
  15. 15.
    Yang X, Kattel S, Senanayake SD, Boscoboinik JA, Nie X, Graciani J, Rodriguez JA, Liu P, Stacchiola DJ, Chen JG (2015) J Am Chem Soc 137:10104–10107PubMedGoogle Scholar
  16. 16.
    Hengne AM, Samal AK, Enakonda LR, Harb M, Gevers LE, Anjum DH, Hedhili MN, Saih Y, Huang KW, Basset JM (2018) ACS Omega 3:3688–3701PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sharafutdinov I, Elkjaer CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) J Catal 320:77–88Google Scholar
  18. 18.
    Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, Hummelshoj JS, Dahl S, Chorkendorff I, Norskov JK (2014) Nat Chem 6:320–324PubMedGoogle Scholar
  19. 19.
    Pan YX, Liu C-J, Ge QF (2008) Langmuir 24:12410–12419PubMedGoogle Scholar
  20. 20.
    Pan YX, Liu C-J, Ge QF (2010) J Catal 272:227–234Google Scholar
  21. 21.
    Pan YX, Mei DH, Liu C-J, Ge QF (2011) J Phys Chem C 115:10140–10146Google Scholar
  22. 22.
    Pan YX, Liu C-J, Mei DH, Ge QF (2010) Langmuir 26:5551–5558PubMedGoogle Scholar
  23. 23.
    Ye JY, Liu C-J, Ge QF (2012) J Phys Chem C 116:7817–7825Google Scholar
  24. 24.
    Ye JY, Liu C-J, Mei DH, Ge QF (2013) ACS Catal 3:1296–1306Google Scholar
  25. 25.
    Ji Y, Luo Y (2016) J Am Chem Soc 138:15896–15902PubMedGoogle Scholar
  26. 26.
    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C (2017) Sci Adv 3:e1701290PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang ZL, Li JF, Wang XL, Qin JQ, Shi WJ, Liu YF, Gao HP, Mao YL (2017) Nanoscale Res Lett 12(1):43PubMedPubMedCentralGoogle Scholar
  28. 28.
    Roy P, Berger S, Schmuki P (2011) Angew Chemie Int Ed 50(13):2904–2939Google Scholar
  29. 29.
    Zhao Z, Tian J, Sang Y, Cabot A, Liu H, Adv H (2015) Mater 27:2557–2582Google Scholar
  30. 30.
    Ananthakumar S, Ramkumar J, Babu SM (2016) Renew Sustain Energy Rev 57:1307–1321Google Scholar
  31. 31.
    Choy JH, Lee HC, Jung H, Huang SJ (2001) J Mater Chem 11:2232–2234Google Scholar
  32. 32.
    Díaz de León JN, Petranovskii V, de los Reyes JA, Alonso-Nuñez G, Zepeda TA, Fuentes S, García-Fierro JL, Appl JL (2014) Catal A Gen 472:1–10Google Scholar
  33. 33.
    Koparde VN, Cummings PT (2008) ACS Nano 2(8):1620–1624PubMedGoogle Scholar
  34. 34.
    Tavizón-Pozos JA, Suárez-Toriello VA, de los Reyes JA, Guevara-Lara A, Pawelec B, Fierro JLG, Vrinat M, Geantet C (2016) Top Catal 59(2–4):241–251Google Scholar
  35. 35.
    Camposeco R, Castillo S, Mejía-Centeno I, Navarrete J, Nava N (2015) Appl Surf Sci 356:115–123Google Scholar
  36. 36.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T (1999) K. Niihara. Adv Mater 11(15):1307–1311Google Scholar
  37. 37.
    Razali MH, Mohd Noor AF, Mohamed AR, Sreekantan S (2012) J Nanomater 2012:1–10Google Scholar
  38. 38.
    Kolenko Y, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Van-tendeloo G, Yoshimura M (2006) J Phys Chem B 110–9:4030–4038Google Scholar
  39. 39.
    Ramesh Kumar Ch, Sai Prasad PS, Lingaiah N (2011) J Mol Catal A: Chem 350:83–90Google Scholar
  40. 40.
    Tang Z, Zhou L, Yang L, Wang F (2009) J Alloy Compd 481(1–2):704–709Google Scholar
  41. 41.
    Tan LL, Ong WJ, Chai SP, Mohamed AR (2013) Nanoscale Res Lett 8:465PubMedPubMedCentralGoogle Scholar
  42. 42.
    Nie X, Luo W, Janik MJ, Asthagiri A (2014) J Catal 312:108–122Google Scholar
  43. 43.
    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) J Catal 343:133–146Google Scholar
  44. 44.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Ouquerol J, Sing KSW (2015) Pure Appl Chem 87(9–10):1051–1069Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.División Académica Multidisciplinaria de Jalpa de MéndezUniversidad Juárez Autónoma de TabascoJalpa de MéndezMexico
  2. 2.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  3. 3.Universidad Juárez Autónoma de TabascoCunduacánMexico

Personalised recommendations