Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3338–3348 | Cite as

Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity

  • Tao Liu
  • Tianliang Lu
  • Mingming Yang
  • Lipeng Zhou
  • Xiaomei Yang
  • Beibei GaoEmail author
  • Yunlai SuEmail author
Article
  • 219 Downloads

Abstract

Synthesis of light hydrocarbons from synthesis gas using bifunctional catalysts consisting of CuO–ZnO–Al2O3 methanol synthesis catalysts and SAPO-5 were investigated in a fixed bed reactor. The operating results showed that both the temperature and the ratio of CZA/SAPO-5 influenced the CO conversion and the selectivity of the catalysts. The effects of different dehydration component such as HZSM-5, HMOR and SAPO-5 and subsequently the impact of the zeolite acidity on the catalytic performance were also investigated. Experimental results indicated that zeolites in bifunctional catalysts played the crucial role for the distribution of hydrocarbons, and SAPO-5 was superior to the other zeolites in terms of better conversion and C3–C5 selectivity due to its suitable topology and proper acidic property. The efficiency of the CZA/SAPO-5 catalysts was found to be directly proportional to the Brönsted acid sites density of the zeolite and Brönsted acid sites are the likely zeolite active sites for DME dehydration. High time–space yield (461.6 mg mL−1 h−1) and high selectivity (88.1%) of light hydrocarbons (C3–C5) could be achieved on the CZA/SAPO-5-0.4 catalyst at 290 °C.

Graphic Abstract

Keywords

Synthesis gas Light hydrocarbons SAPO-5 Acidity Bifunctional catalyst 

Notes

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2018M642769) for the financial supports.

Supplementary material

10562_2019_2901_MOESM1_ESM.docx (577 kb)
Supplementary material 1 (DOCX 577 kb)

References

  1. 1.
    Yang S, Xiao L, Yang S, Kraslawski A, Man Y, Qian Y (2014) ACS Sustain Chem Eng 2:80.  https://doi.org/10.1021/sc400336e CrossRefGoogle Scholar
  2. 2.
    Zhang S, Li D, Liu Y, Zhang Y, Wu Q (2019) Catal Lett 149:1486.  https://doi.org/10.1007/s10562-019-02775-x CrossRefGoogle Scholar
  3. 3.
    Cheng K, Zhang L, Kang J, Peng X, Zhang Q, Wang Y (2015) Chem Eur J 21:1928.  https://doi.org/10.1002/chem.201405277 CrossRefPubMedGoogle Scholar
  4. 4.
    Yang J, Gong K, Miao D, Jiao F, Pan X, Meng X, Xiao F, Bao X (2019) J Energy Chem 35:44.  https://doi.org/10.1016/j.jechem.2018.10.008 CrossRefGoogle Scholar
  5. 5.
    Kondratenko EV, Peppel T, Seeburg D, Kondratenko VA, Kalevaru N, Martin A, Wohlrab S (2017) Catal Sci Technol 7:366.  https://doi.org/10.1039/C6CY01879C CrossRefGoogle Scholar
  6. 6.
    Batamack PTD, Mathew T, Prakash GKS (2017) J Am Chem Soc 139:18078.  https://doi.org/10.1021/jacs.7b10725 CrossRefPubMedGoogle Scholar
  7. 7.
    Alayat A, Mcllroy DN, McDonald AG (2018) Fuel Process Technol 169:132.  https://doi.org/10.1016/j.fuproc.2017.09.011 CrossRefGoogle Scholar
  8. 8.
    Nie C, Zhan H, Ma H, Qian W, Sun Q, Ying W (2019) Catal Lett 149:1375.  https://doi.org/10.1007/s10562-019-02700-2 CrossRefGoogle Scholar
  9. 9.
    Xue Y, Ge H, Chen Z, Zhai Y, Zhang J, Sun J, Abbas M, Lin K, Zhao W, Chen J (2018) J Catal 358:237.  https://doi.org/10.1016/j.jcat.2017.12.017 CrossRefGoogle Scholar
  10. 10.
    Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S, Qiao M, Zhang X, Zong B (2014) Nat Commun 5:5783.  https://doi.org/10.1038/ncomms6783 CrossRefPubMedGoogle Scholar
  11. 11.
    Hibbitts D, Dybeck E, Lawlor T, Neurock M, Iglesia E (2016) J Catal 337:91.  https://doi.org/10.1016/j.jcat.2016.01.010 CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Wang C, Yang J, Sun Y, Li Q, Zheng Y, Hu YH (2019) Fuel 244:395.  https://doi.org/10.1016/j.fuel.2019.02.024 CrossRefGoogle Scholar
  14. 14.
    Zhao B, Zhai P, Wang P, Li J, Li T, Peng M, Zhao M, Hu G, Yang Y, Li YW, Zhang Q, Fan W, Ma D (2017) Chem 3:323.  https://doi.org/10.1016/j.chempr.2017.06.017 CrossRefGoogle Scholar
  15. 15.
    Harmel J, Peres L, Estrader M, Berliet A, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K (2018) Angew Chem Int Ed 57:10579.  https://doi.org/10.1002/anie.201804932 CrossRefGoogle Scholar
  16. 16.
    Li J, Pan X, Bao X (2015) Chin J Catal 36:1131.  https://doi.org/10.1016/S1872-2067(14)60297-7 CrossRefGoogle Scholar
  17. 17.
    Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333.  https://doi.org/10.1016/S0166-9834(00)84123-8 CrossRefGoogle Scholar
  18. 18.
    Deng X, Liu Y, Huang W (2018) J Energy Chem 27:319.  https://doi.org/10.1016/j.jechem.2017.10.007 CrossRefGoogle Scholar
  19. 19.
    Kim J-H, Park MJ, Kim SJ, Joo O-S, Jung K-D (2004) Appl Catal A 264:37.  https://doi.org/10.1016/j.apcata.2003.12.058 CrossRefGoogle Scholar
  20. 20.
    Kuld S, Thorhauge M, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Science 352:969.  https://doi.org/10.1126/science.aaf0718 CrossRefPubMedGoogle Scholar
  21. 21.
    Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893.  https://doi.org/10.1126/science.1219831 CrossRefPubMedGoogle Scholar
  22. 22.
    Chen Y, Xu Y, Cheng D-G, Chen Y, Chen F, Lu X, Huang Y, Ni S (2015) J Chem Technol Biotechnol 90:415.  https://doi.org/10.1002/jctb.4309 CrossRefGoogle Scholar
  23. 23.
    Nieskens DLS, Ciftci A, Groenendijk PE, Wielemaker MF, Malek A (2017) Ind Eng Chem Res 56:2722.  https://doi.org/10.1021/acs.iecr.6b04643 CrossRefGoogle Scholar
  24. 24.
    Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2005) Catal Lett 102:51.  https://doi.org/10.1007/s10562-005-5202-x CrossRefGoogle Scholar
  25. 25.
    Ge Q, Lian Y, Yuan X, Li X, Fujimoto K (2008) Catal Commun 9:256.  https://doi.org/10.1016/j.catcom.2007.06.011 CrossRefGoogle Scholar
  26. 26.
    Lu P, Shen D, Cheng S, Hondo E, Chizema LG, Wang C, Gai X, Lu C, Yang R (2018) Fuel 223:157.  https://doi.org/10.1016/j.fuel.2018.02.159 CrossRefGoogle Scholar
  27. 27.
    Ma X, Ge Q, Ma J, Xu H (2013) Fuel Process Technol 109:1.  https://doi.org/10.1016/j.fuproc.2013.01.002 CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2004) Fuel Process Technol 85:1139.  https://doi.org/10.1016/j.fuproc.2003.10.016 CrossRefGoogle Scholar
  29. 29.
    Li C, Yuan X, Fujimoto K (2014) Appl Catal A 475:155.  https://doi.org/10.1016/j.apcata.2014.01.025 CrossRefGoogle Scholar
  30. 30.
    Ereña J, Arandes JM, Bilbao J, Olazar M, de Lasa HI (1999) J Chem Technol Biotechnol 72:190.  https://doi.org/10.1002/(SICI)1097-4660(199806)72:2%3c190:AID-JCTB895%3e3.0.CO;2-8 CrossRefGoogle Scholar
  31. 31.
    Mysov VM, Reshetnikov SI, Stepanov VG, Ione KG (2005) Chem Eng J 107:63.  https://doi.org/10.1016/j.cej.2004.12.011 CrossRefGoogle Scholar
  32. 32.
    Dagle RA, Lizarazo-Adarme JA, Lebarbier Dagle V, Gray MJ, White JF, King DL, Palo DR (2014) Fuel Process Technol 123:65.  https://doi.org/10.1016/j.fuproc.2014.01.041 CrossRefGoogle Scholar
  33. 33.
    Lorenz E, Wehling P, Schlereth M, Kraushaar-Czarnetzki B (2016) Catal Today 275:183.  https://doi.org/10.1016/j.cattod.2016.03.004 CrossRefGoogle Scholar
  34. 34.
    Flores JH, da Silva MIP (2016) Catal Lett 146:1505.  https://doi.org/10.1007/s10562-016-1771-0 CrossRefGoogle Scholar
  35. 35.
    Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317.  https://doi.org/10.1021/ar020006o CrossRefPubMedGoogle Scholar
  36. 36.
    Wang C, Ma X, Ge Q, Xu H (2015) Catal Sci Technol 5:1847.  https://doi.org/10.1039/C4CY01494D CrossRefGoogle Scholar
  37. 37.
    Cheng K, Zhou W, Kang J, He S, Shi S, Zhang Q, Pan Y, Wen W, Wang Y (2017) Chem 3:334.  https://doi.org/10.1016/j.chempr.2017.05.007 CrossRefGoogle Scholar
  38. 38.
    Gayubo AG, Benito PL, Aguayo AT, Olazar M, Bilbao J (1996) J Chem Technol Biotechnol 65:186.  https://doi.org/10.1002/(SICI)1097-4660(199602)65:2%3c186:AID-JCTB401%3e3.0.CO;2-J CrossRefGoogle Scholar
  39. 39.
    Wang L, Guo C, Yan S, Huang X, Li Q (2003) Micropor Mesopor Mater 64:63.  https://doi.org/10.1016/S1387-1811(03)00482-7 CrossRefGoogle Scholar
  40. 40.
    Guisnet M, Ayrault P, Datka J (1997) Pol J Chem 71:1455Google Scholar
  41. 41.
    van Bennekom JG, Venderbosch RH, Winkelman JGM, Wilbers E, Assink D, Lemmens KPJ, Heeres HJ (2013) Chem Eng Sci 87:204.  https://doi.org/10.1016/j.ces.2012.10.013 CrossRefGoogle Scholar
  42. 42.
    García-Trenco A, Martínez A (2012) Appl Catal A 411–412:170.  https://doi.org/10.1016/j.apcata.2011.10.036 CrossRefGoogle Scholar
  43. 43.
    Yuen L-T, Zones SI, Harris TV, Gallegos EJ (1994) Micropor Mater 2:105.  https://doi.org/10.1016/0927-6513(93)E0039-J CrossRefGoogle Scholar
  44. 44.
    Westgård Erichsen M, Svelle S, Olsbye U (2013) J Catal 298:94.  https://doi.org/10.1016/j.jcat.2012.11.004 CrossRefGoogle Scholar
  45. 45.
    Westgård Erichsen M, Svelle S, Olsbye U (2013) Catal Today 215:216.  https://doi.org/10.1016/j.cattod.2013.03.017 CrossRefGoogle Scholar
  46. 46.
    Lebarbier VM, Dagle RA, Kovarik L, Lizarazo-Adarme JA, King DL, Palo DR (2012) Catal Sci Technol 2:2116.  https://doi.org/10.1039/C2CY20315D CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations