Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3328–3337 | Cite as

Diamine-Decorated Graphene Oxide with Immobilized Gold Nanoparticles of Small Size for Alkenes Epoxidation with H2O2

  • Weiguo ZhengEmail author
  • Haining Hu
  • Yaju ChenEmail author
  • Rong Tan
  • Donghong Yin
Article
  • 61 Downloads

Abstract

Diamine-decorated graphene oxide (NH2-GO) is successfully synthesized by covalently intercalated ethanediamines into the flat planes and edge of the GO sheet. The diamines could be act as buffer layer, thereby avoiding the stacking of graphene sheets, and offer abundant metal-chelating sites to subsequently obtain well-dispersed metal nanoparticles of small size. After the in situ reduction and deposition of AuNPs, it was found that the Au particle size of Au0.9%@NH2-GO estimated to be around 2–5 nm. The as-prepared GO-supported small AuNPs exhibited good catalytic performance for the heterogeneous epoxidation of alkenes with H2O2 under mild conditions. Notably, they presented good expansibility for either bulky or less bulky alkenes in this reaction, owing to the facilitated efficiency of mass transfer of substrates and products resulted from the supporting effect of intercalated diamines and high surface area of GO. Moreover, these heterogeneous catalysts could be readily recovered and recycled for five times with the remained activity and selectivity.

Graphic Abstract

Gold nanoparticles of small size immobilized on the diamine-decorated graphene oxide has been developed, which employed as an efficient, universal and reusable catalyst for the epoxidation of alkenes using H2O2 as an oxidant.

Keywords

Graphene oxide Gold nanoparticles Heterogeneous catalysis Epoxidation 

Notes

Acknowledgements

The project was financially supported by the Scientific Research Project of Education Department of Hunan Province (Grant No. 16C1083) and the Doctoral Scientific Research Start-up Project of Hunan University of Arts and Science.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10562_2019_2895_MOESM1_ESM.docx (158 kb)
Supplementary material 1 (DOCX 158 kb)

References

  1. 1.
    Yudin AK (2006) WILEY-VCH Verlag GmbH & Co KGaA: WeinheimGoogle Scholar
  2. 2.
    Xia Q-H, Ge H-Q, Ye C-P, Liu Z-M, Su K-X (2005) Chem Rev 105:1063Google Scholar
  3. 3.
    Grigoropoulou G, Clark JH, Elings JA (2003) Green Chem 5:1Google Scholar
  4. 4.
    Li Z, Yang C, Cui J, Ma Y, Kan Q, Guan J (2018) Chem Asian J 13:3790PubMedGoogle Scholar
  5. 5.
    Lane BS, Burgess K (2003) Chem Rev 103:2457PubMedGoogle Scholar
  6. 6.
    Zheng W, Tan R, Zhao L, Chen Y, Xiong C, Yin D (2014) RSC Adv 4:11732Google Scholar
  7. 7.
    Fingerhut A, Serdyuk OV, Tsogoeva SB (2015) Green Chem 17:2042Google Scholar
  8. 8.
    Blanckenberg A, Malgas-Enus R (2018) Catal Rev 61:27Google Scholar
  9. 9.
    Lueangchaichaweng W, Singh B, Mandelli D, Carvalho WA, Fiorilli S, Pescarmona PP (2019) Appl Catal A 571:180Google Scholar
  10. 10.
    Bregante DT, Johnson AM, Patel AY, Ayla EZ, Cordon MJ, Bukowski BC, Greeley J, Gounder R, Flaherty DW (2019) J Am Chem Soc 141:7302PubMedGoogle Scholar
  11. 11.
    De Faveri G, Ilyashenko G, Watkinson M (2011) Chem Soc Rev 40:1722PubMedGoogle Scholar
  12. 12.
    Li Z, Yang C, Ma Y, Li P, Guan J, Kan Q (2017) Appl Organomet Chem 31:3742Google Scholar
  13. 13.
    Liu X, He L, Liu Y-M, Cao Y (2014) Acc Chem Res 47:793PubMedGoogle Scholar
  14. 14.
    Ji J, Lu Z, Lei Y, Turner C (2018) Catalysts 8:421Google Scholar
  15. 15.
    Lu Z, Piernavieja-Hermida M, Turner CH, Wu Z, Lei Y (2018) J Phys Chem C 122:1688Google Scholar
  16. 16.
    Dou J, Tao F (2017) Appl Catal A 529:134Google Scholar
  17. 17.
    Nepak D, Srinivas D (2016) Appl Catal A 523:61Google Scholar
  18. 18.
    Shi Y, Guo Z, Wang Q, Zhang L, Li J, Zhou Y, Wang J (2017) ChemCatChem 9:4426Google Scholar
  19. 19.
    Polshettiwar V, Varma RS (2010) Green Chem 12:743Google Scholar
  20. 20.
    Wang F, Liu C, Liu G, Liu J (2015) J Porous Mater 22:1423Google Scholar
  21. 21.
    Huang C, Zhang H, Sun Z, Zhao Y, Chen S, Tao R, Liu Z (2011) J Colloid Interface Sci 364:298PubMedGoogle Scholar
  22. 22.
    Campbell CT, Parker SC, Starr DE (2002) Science 298:811PubMedGoogle Scholar
  23. 23.
    Cao A, Lu R, Veser G (2010) Phys Chem Chem Phys 12:13499PubMedGoogle Scholar
  24. 24.
    Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752Google Scholar
  25. 25.
    Chen D, Feng H, Li J (2012) Chem Rev 112:6027PubMedGoogle Scholar
  26. 26.
    Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2016) Coordin Chem Rev 312:99Google Scholar
  27. 27.
    Pyun J (2011) Angew Chem Int Ed 50:46Google Scholar
  28. 28.
    Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832Google Scholar
  29. 29.
    Yang X, Wu S, Hu J, Fu X, Peng L, Kan Q, Huo Q, Guan J (2016) Catal Commun 87:90Google Scholar
  30. 30.
    Li Z, Wu S, Yang C, Ma Y, Fu X, Peng L, Guan J, Kan Q (2017) Mol Catal 432:267Google Scholar
  31. 31.
    Rajesh R, Sujanthi E, Senthil Kumar S, Venkatesan R (2015) Phys Chem Chem Phys 17:11329PubMedGoogle Scholar
  32. 32.
    Yang J, Tian C, Wang L, Fu H (2011) J Mater Chem 21:3384Google Scholar
  33. 33.
    Peng L, Zhang J, Yang S, Han B, Sang X, Liu C, Ma X, Yang G (2015) Chem Commun 51:4398Google Scholar
  34. 34.
    Pocklanova R, Rathi AK, Gawande MB, Datta KKR, Ranc V, Cepe K, Petr M, Varma RS, Kvitek L, Zboril R (2016) J Mol Catal A 424:121Google Scholar
  35. 35.
    Song F-Z, Zhu Q-L, Tsumori N, Xu Q (2015) ACS Catal 5:5141Google Scholar
  36. 36.
    Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339Google Scholar
  37. 37.
    Šimšíková M, Bartoš M, Keša P, Šikola T (2016) Mater Chem Phys 177:339Google Scholar
  38. 38.
    Wang Q, Wang Q, Li M, Szunerits S, Boukherroub R (2016) New J Chem 40:5473Google Scholar
  39. 39.
    Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HK, Li L, Tan LP (2011) Chem Commun 47:5235Google Scholar
  40. 40.
    Rajesh R, Venkatesan R (2012) J Mol Catal A 359:88Google Scholar
  41. 41.
    Veerapandian M, Lee M-H, Krishnamoorthy K, Yun K (2012) Carbon 50:4228Google Scholar
  42. 42.
    Zhang M, Lu X, Wang H-Y, Liu X, Qin Y, Zhang P, Guo Z-X (2016) RSC Adv 6:35945Google Scholar
  43. 43.
    Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST (2010) Adv Mater 22:892PubMedGoogle Scholar
  44. 44.
    Zheng W, Tan R, Luo X, Xing C, Yin D (2015) Catal Lett 146:281Google Scholar
  45. 45.
    Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) J Phys Chem C 113:15801Google Scholar
  46. 46.
    Dharanivasan G, Rajamuthuramalingam T, Jesse MID, Rajendiran N, Kathiravan K (2014) Appl Nanosci 5:39Google Scholar
  47. 47.
    Zhang F, Srinivasan MP (2008) J Colloid Interface Sci 319:450PubMedGoogle Scholar
  48. 48.
    Saikia M, Kaichev V, Saikia L (2016) RSC Adv 6:106856Google Scholar
  49. 49.
    Liu Y, Liu S, Lai X, Miao J, He D, Li N, Luo F, Shi Z, Liu S (2015) Adv Funct Mater 25:4480Google Scholar
  50. 50.
    Payne GB, Deming PH, Williams PH (1961) J Org Chem 26:659Google Scholar
  51. 51.
    Jin Y, Zhuang D, Yu N, Zhao H, Ding Y, Qin L, Liu J, Yin D, Qiu H, Fu Z, Yin D (2009) Microporous Mesoporous Mater 126:159Google Scholar
  52. 52.
    Zanella R, Giorgio S, Claude Henry R, Louis C (2002) J Phys Chem B 106:7634Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials EngineeringHunan University of Arts and ScienceChangdePeople’s Republic of China
  2. 2.College of ChemistryGuangdong University of Petrochemical TechnologyMaomingPeople’s Republic of China
  3. 3.National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations