Advertisement

Catalysis Letters

, Volume 149, Issue 12, pp 3465–3475 | Cite as

Co-immobilization of Laccase and TEMPO onto Glycidyloxypropyl Functionalized Fibrous Phosphosilicate Nanoparticles for Fixing CO2 into β-Oxopropylcarbamatesin

  • Liqun Fan
  • Jinhu WangEmail author
  • Xianman Zhang
  • Seyed Mohsen SadeghzadehEmail author
  • Rahele Zhiani
  • Mina Shahroudi
  • Fatemeh Amarloo
Article
  • 61 Downloads

Abstract

TEMPO or Anchoring 2,2,6,6-tetra-methylpiperidine-1oxyl radical into the nanospaces a fibre of phosphosilicate with laccase compound causes an unheard potent to be producing which called bifunctional nanocatalyst (TEMPO@FPS-laccase). TEMPO@FPS-laccase indicated proper catalytic activity for synthesis of β-oxopropylcarbamates in aqueous medium without any pollutants through a multi component coupling of CO2, amines and propargyl alcohols in moderate condition. Free laccases may not be recovered but can be easily disabled in different environmental conditions. Enzyme immobilization is known as an expanding way to enhance resistor to extreme conditions and stability as well as recycled of laccase.

Graphic Abstract

Keywords

Nanocatalyst Green chemistry Kinetic One-pot synthesis Nanoparticle Laccase 

Notes

Acknowledgements

The study was supported by “Natural Science Foundation of Shandong Province (Grant Nos. ZR201702200464, ZR2019QB013)” and “Science and Technology Development Plan Project of Zaozhuang City (Grant No. 2019GX07)”.

References

  1. 1.
    Huang K, Sun CL, Shi ZJ (2011) Chem Soc Rev 40:2435–2452CrossRefGoogle Scholar
  2. 2.
    Pinaka A, Vougioukalakis GC (2015) Coord Chem Rev 288:69–97CrossRefGoogle Scholar
  3. 3.
    Yu D, Teong SP, Zhang Y (2015) Transition metal complex catalyzed carboxylation reactions with CO2. Coord Chem Rev 293–294:279–291CrossRefGoogle Scholar
  4. 4.
    Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Chem Soc Rev 43:7995–8048CrossRefGoogle Scholar
  5. 5.
    Sasaki Y, Dixneuf PH (1987) J Org Chem 52:4389–4391CrossRefGoogle Scholar
  6. 6.
    Bruneau C, Dixneuf PH (1987) Tetrahedron Lett 28:2005–2008CrossRefGoogle Scholar
  7. 7.
    Kim TJ, Kwon KH, Kwon SC, Baeg JO, Shim SC (1990) J Organomet Chem 389:205–217CrossRefGoogle Scholar
  8. 8.
    Kim HS, Kim JW, Kwon SC, Shim SC, Kim TJ (1997) J Organomet Chem 545:337–344CrossRefGoogle Scholar
  9. 9.
    Li XD, Lang XD, Song QW, Guo YK, He LN (2016) Chin J Org Chem 36:744–751CrossRefGoogle Scholar
  10. 10.
    Song QW, Liu P, Han LH, Zhang K, He LN (2018) Chin J Chem 36:147–152CrossRefGoogle Scholar
  11. 11.
    Ca ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M (2011) Adv Synth Catal 353:133–146CrossRefGoogle Scholar
  12. 12.
    Mate DM, Alcalde M (2017) Microb Biotechnol 10:1457–1467CrossRefGoogle Scholar
  13. 13.
    Chao C, Zhao YF, Guan HJ, Liu GX, Hu ZG, Zhang B (2017) Environ Eng Sci 34:762–770CrossRefGoogle Scholar
  14. 14.
    Su J, Fu JJ, Wang Q, Silva C (2018) Crit Rev Biotechnol 38:294–307CrossRefGoogle Scholar
  15. 15.
    Mate DM, Alcalde M (2015) Biotechnol Adv 33:25–40CrossRefGoogle Scholar
  16. 16.
    Jeon JR, Chang YS (2013) Trends Biotechnol 31:335–341CrossRefGoogle Scholar
  17. 17.
    Kudanga T, Le Roes-Hill M (2014) Appl Microbiol Biotechnol 98:6525–6542CrossRefGoogle Scholar
  18. 18.
    Das A, Stahl SS (2017) Angew Chem 56:8892–8897CrossRefGoogle Scholar
  19. 19.
    Engström K, Johnston EV, Verho O, Gustafson KPJ, Shakeri M, Tai CW, Bäckvall JE (2013) Angew Chem 125:14256–14260CrossRefGoogle Scholar
  20. 20.
    Maity A, Polshettiwar V (2017) ChemSusChem 10:3866–3913CrossRefGoogle Scholar
  21. 21.
    Polshettiwar V, Cha D, Zhang X, Basset JM (2010) Angew Chem Int Ed 49:9652–9656CrossRefGoogle Scholar
  22. 22.
    Massiot Ph, Centeno MA, Carrizosa I, Odriozola JA (2001) J Non-Cryst Solids 292:158–166CrossRefGoogle Scholar
  23. 23.
    Liu HS, Chin TS, Yung SW (1997) Mater Chem Phys 50:1CrossRefGoogle Scholar
  24. 24.
    Stan M, Vasdilescu A, Moscu S, Zaharescu M (1998) Rev Roum Chim 43:425Google Scholar
  25. 25.
    Chakraborty IN, Condrate RA (1985) Phys Chem Glasses 26:68–73Google Scholar
  26. 26.
    Kim YK, Tressler RE (1994) J Mater Sci 29:2531–2535CrossRefGoogle Scholar
  27. 27.
    Lakshminarayana G, Nogami M (2010) Solid State Ionics 181:760–766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liqun Fan
    • 1
  • Jinhu Wang
    • 1
    Email author
  • Xianman Zhang
    • 1
  • Seyed Mohsen Sadeghzadeh
    • 2
    • 3
    Email author
  • Rahele Zhiani
    • 2
    • 3
  • Mina Shahroudi
    • 2
    • 3
  • Fatemeh Amarloo
    • 2
    • 3
  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceZaozhuang UniversityZaozhuangChina
  2. 2.Young Researchers and Elite Club, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
  3. 3.New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur BranchIslamic Azad UniversityNeyshaburIran

Personalised recommendations