Advertisement

Synthesis of Hierarchically Porous Zeolite Ti-MWW with Different Hard Templates and Their Application in Allyl Alcohol Conversion

  • Songlin Xu
  • Mingyi Zhang
  • Shujuan Guo
  • Mengru Li
  • Qingming Huang
  • Xiaohui ChenEmail author
Article
  • 54 Downloads

Abstract

Diffusion limitation caused by microporous molecular sieves has always been a bottleneck problem in liquid phase epoxidation. In this study, several different carbon sources were used as hard templates to prepare hierarchically porous zeolite Ti-MWW (cTi-MWW) successfully. Compared with conventional Ti-MWW, cTi-MWW has an additional hierarchically porous structure and abundant pore structure distribution. Especially, the cTi-MWW prepared with polyethylene glycol1540 (PEG) as the hard template not only has a multiple hierarchically porous structure, but also exhibits small crystal size and good hydrophobicity properties studied by TEM and in situ FT-IR. At the same time, the cTi-MWW prepared with PEG exhibits better activity than the conventional Ti-MWW in the selective epoxidation reaction of allyl alcohol (AAL) with H2O2 as oxidant and the conversion is improved by 11% (Si/Ti = 20). And a higher efficiency and longer catalyst life in fixed-bed catalytic reactor were exhibited by using cTi-MWWPEG as catalyst. The physicochemical properties of cTi-MWW prepared with different hard templates were systematically studied by SEM, XPS, UV–Vis, XRD and N2 absorption–desorption techniques. This method is effective for the synthesis of cTi-MWW and significant for the preparation of hierarchically porous zeolites in industrial production.

Graphic Abstract

A hierarchically porous zeolite Ti-MWW prepared with different hard templates successfully. With the hierarchically porous structure, which have better adsorption, diffusion, and reactivity in liquid phase epoxidation, thus improving the catalytic activity. Especially, the hierarchically porous zeolite Ti-MWW prepared with polyethylene glycol exhibits small crystal size and good hydrophobicity properties.

Keywords

Hard template Hierarchically porous Ti-MWW Glycidol Diffusion 

Notes

Acknowledgements

Sincerely acknowledges the support of the National Natural Science Foundation of China (No. 21571036). Sincerely thank Zhang Xinqi for helping to analyze the TEM results from the test center.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fan W, Wu P, Namba S et al (2006) Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. J Catal 243(1):183–191CrossRefGoogle Scholar
  2. 2.
    Kim TK, Yang ST, Dong RP et al (2010) Ti-MWW synthesis and catalytic applications in partial oxidation reactions. Top Catal 53(7–10):470–478CrossRefGoogle Scholar
  3. 3.
    Wang L, Liu Y, Wei X et al (2007) Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts. J Catal 246(1):205–214CrossRefGoogle Scholar
  4. 4.
    Lu X, Hao X, Yan J et al (2018) One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. J Catal 358:89–99CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Zhou D, Zhang T et al (2018) High-rota synthesis of single-/double-/multi-unit-cell Ti-HSZ nanosheets To catalyze epoxidation of large cycloalkenes efficiently. ACS Appl Mater Interfaces 10(7):6390–6397PubMedCrossRefGoogle Scholar
  6. 6.
    Xin QL, Ye JG, Hao X et al (2017) Clean synthesis of furfural oxime through liquid-phase ammoximation of furfural over titanosilicate catalysts. Green Chem 19(20):4871–4878CrossRefGoogle Scholar
  7. 7.
    Song Z, Wei X, Yang J et al (2011) An investigation into cyclohexanone ammoximation over Ti-MWW in a continuous slurry reactor. Appl Catal A 394(1):1–8CrossRefGoogle Scholar
  8. 8.
    Wei X, Zheng Y, Song Z et al (2010) Selective oxidation of pyridine to pyridine-N-oxide with hydrogen peroxide over Ti-MWW catalyst. Catal Today 157(1):114–118Google Scholar
  9. 9.
    Leonowicz ME, Lawton JA, Lawton SL et al (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264(5167):1910–1913PubMedCrossRefGoogle Scholar
  10. 10.
    Roth WJ (2005) MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis. Stud Surf Sci Catal 158(05):19–26CrossRefGoogle Scholar
  11. 11.
    Wu P, Tatsumi T, Komatsu T et al (2001) A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J Phys Chem B 105(15):2897–2905CrossRefGoogle Scholar
  12. 12.
    Wu P, Nuntasri D, Ruan J et al (2004) Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes. J Phys Chem B 108(50):19126–19131CrossRefGoogle Scholar
  13. 13.
    Wu P, Tatsumi T, Komatsu T et al (2001) A novel titanosilicate with MWW structure. II. Catalytic properties in the selective oxidation of alkenes. J Catal 202(2):245–255CrossRefGoogle Scholar
  14. 14.
    Song F, Liu Y, Wu H et al (2006) A novel titanosilicate with MWW structure: highly effective liquid-phase ammoximation of cyclohexanone. J Catal 237(2):359–367CrossRefGoogle Scholar
  15. 15.
    Wu P, Tatsumi T (2003) A novel titanosilicate with MWW structure: III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. J Catal 214(2):317–326CrossRefGoogle Scholar
  16. 16.
    Wu P, Liu Y, He M et al (2004) A novel titanosilicate with MWW structure: catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide. J Catal 228(1):183–191Google Scholar
  17. 17.
    Fajdek A, Wroblewska A, Milchert E et al (2012) Epoxidation of methallyl alcohol to 2-methylglycidol over Ti-MWW catalyst under atmospheric pressure. Oxid Commun 35(2):177–292Google Scholar
  18. 18.
    Fajdek A, Wroblewska A, Milchert E et al (2014) Optimisation of the process parameters of epoxidation of crotyl alcohol with hydrogen peroxide on Ti-MWW catalyst. Oxid Commun 37(2):445–460Google Scholar
  19. 19.
    Wróblewska A, Wajzberg J, Fajdek A et al (2010) Influence of technological parameters on the epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst. J Chem Technol Biotechnol 84(9):1344–1349CrossRefGoogle Scholar
  20. 20.
    Wróblewskaa A, Walaseka M, Michalkiewiczb B (2017) Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst. Curr Chem Lett 6:7–14CrossRefGoogle Scholar
  21. 21.
    Wang Q, Mi Z, Wang Y et al (2005) Epoxidation of allyl choride with molecular oxygen and 2-ethyl-anthrahydroquinone catalyzed by TS-1. J Mol Catal A 229(1):71–75CrossRefGoogle Scholar
  22. 22.
    Wu P, Tatsumi T (2002) Preparation of B-free Ti-MWW through reversible structural conversion. Chem Commun 10(10):1026–1027CrossRefGoogle Scholar
  23. 23.
    Flanigen EM, Bennett JM, Grose RW et al (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271(5645):512–516CrossRefGoogle Scholar
  24. 24.
    Fan W, Duan RG, Yokoi T et al (2008) Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J Am Chem Soc 130(31):10150–10164PubMedCrossRefGoogle Scholar
  25. 25.
    De BT, Steenackers B, De VD (2013) Ti-substituted zeolite Beta: a milestone in the design of large pore oxidation catalysts. Chem Commun 49(68):7474–7476CrossRefGoogle Scholar
  26. 26.
    Taramasso M, Perego G, Notari B, Inventors (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US patent 4410501Google Scholar
  27. 27.
    Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166(2):3–19CrossRefGoogle Scholar
  28. 28.
    Tao Yousheng, Kanoh Hirofumi, Lloyd Abrams A et al (2010) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 37(21):896–910Google Scholar
  29. 29.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2419PubMedCrossRefGoogle Scholar
  30. 30.
    Chal R, Gerardin C, Bulut M et al (2011) ChemInform abstract: overview and industrial assessment of synthesis strategies towards zeolites with mesopores. Chemcatchem 3(1):67–81CrossRefGoogle Scholar
  31. 31.
    Serrano DP, Escola JM, Pizarro P (2013) ChemInform abstract: synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42(9):4004–4035PubMedCrossRefGoogle Scholar
  32. 32.
    Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17(10):2494–2513CrossRefGoogle Scholar
  33. 33.
    Christensen CH, Johannsen K, Schmidt I et al (2003) Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. J Am Chem Soc 125(44):13370–13371PubMedCrossRefGoogle Scholar
  34. 34.
    Prech J (2018) Catalytic performance of advanced titanosilicate selective oxidation catalysts—a review. Catal Rev 60(1):71–131CrossRefGoogle Scholar
  35. 35.
    Prech J, Pizarro P, Serrano DP et al (2018) From 3D to 2D zeolite catalytic materials. Chem Soc Rev 47(22):8263–8306PubMedCrossRefGoogle Scholar
  36. 36.
    Tsunoji N, Maksym V, Opanasenko MK et al (2018) Highly-Active layered titanosilicate catalyst with high surface density of isolated titanium on the accessible interlayer surfa. ChemCatChem 10(12):2536–2540CrossRefGoogle Scholar
  37. 37.
    Aleksandra K, Justyna G, Roth WJ et al (2018) Incorporation of Ti as a pyramidal framework site in the mono-layered MCM-56 zeolite and its oxidation activity. ChemCatChem 11(1):520–527Google Scholar
  38. 38.
    Wang H, Pinnavaia TJ (2006) MFI zeolite with small and uniform intracrystal mesopores. Angew Chem Int Ed Engl 45(45):7603–7606PubMedCrossRefGoogle Scholar
  39. 39.
    Xiao FS, Wang L, Yin C et al (2010) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed Engl 45(19):3090–3093CrossRefGoogle Scholar
  40. 40.
    Yang J, Chu J, Wang J et al (2014) Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions. Chin J Catal 35(1):49–57CrossRefGoogle Scholar
  41. 41.
    Jacobsen CJH, Madsen C, Houzvicka J et al (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122(29):7116–7117CrossRefGoogle Scholar
  42. 42.
    Schmidt I, Boisen A, Gustavsson E et al (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13(12):4416–4418CrossRefGoogle Scholar
  43. 43.
    Fan SH, Cheng MJ (2016) Synthesis of hierarchical MCM-22 using graphene oxide as solid template. J Synth Cryst 45(2):546–550Google Scholar
  44. 44.
    Yang ZX, Xia YD, Mokaya R (2010) Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv Mater 16(8):727–732CrossRefGoogle Scholar
  45. 45.
    Zhu H, Liu Z, Wang Y et al (2008) Nanosized CaCO3 as hard template for creation of intracrystal pores within Silicalite-1 crystal. Chem Mater 20(3):1134–1139CrossRefGoogle Scholar
  46. 46.
    Chen G, Lin J, Wang L et al (2010) Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol. Microporous Mesoporous Mater 134(1):189–194CrossRefGoogle Scholar
  47. 47.
    Tao H, Hong Y, Liu X et al (2013) Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures. Chem Eng J 225(6):686–694CrossRefGoogle Scholar
  48. 48.
    Mori H, Uota M et al (2006) Synthesis of micro-mesoporous bimodal silica nanoparticles using lyotropic mixed surfactant liquid-crystal templates. Microporous Mesoporous Mater 91(1):172–180CrossRefGoogle Scholar
  49. 49.
    Lee DW, Yu CY, Lee KH (2008) Facile synthesis of mesoporous carbon and silica from a silica nanosphere-sucrose nanocomposite. J Mater Chem 19(2):299–304CrossRefGoogle Scholar
  50. 50.
    Lei C, Pi M, Jiang C et al (2017) Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J Colloid Interface Sci 490:242–251PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang J, Jorda JL, Yu J et al (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333(6046):1131–1134PubMedCrossRefGoogle Scholar
  52. 52.
    Corma A, Fornes V, Pergher SB et al (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396(6709):353–356CrossRefGoogle Scholar
  53. 53.
    Despert G, Oberdisse J (2003) Formation of micelle-decorated colloidal silica by adsorption of nonionic surfactant. Langmuir 19(18):7604–7610CrossRefGoogle Scholar
  54. 54.
    Xu L, Huang DD, Li CG et al (2015) Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chem Commun 51(43):9010–9013CrossRefGoogle Scholar
  55. 55.
    Tatsumi T, Koyano KA, Tanaka Y et al (1998) Stabilization of M41S materials by trimethylsilylation. Stud Surf Sci Catal 117(98):143–150CrossRefGoogle Scholar
  56. 56.
    Marina K, Kresten E, Kake Z, Christensen CH (2007) Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chem Mater 19(12):2915–2917CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical EngineeringFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.Ocean CollegeMinjiang UniversityFuzhouPeople’s Republic of China
  3. 3.Testing CentreFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations