Advertisement

Fabrication of Novel Ag/AgBr/Cs2Nb4O11 Ternary Composite for Visible-Light Driven Photocatalysis

  • Perala Venkataswamy
  • Manasa Sunku
  • Ravi Gundeboina
  • Radha Velchuri
  • M. VithalEmail author
Article

Abstract

In recent years, tuning the structural and photocatalytic properties of semiconductors with the introduction of Ag nanoparticles through their well-known surface plasmon resonance (SPR) effect has gained much interest in the field of environmental applications. Herein, a new plasmonic Ag/AgBr/Cs2Nb4O11 composite was successfully fabricated by applying a visible-light reduction method using the pre-prepared AgBr/Cs2Nb4O11 and Cs2Nb4O11 catalysts synthesized by sonication-assisted deposition precipitation and solid-state methods, respectively. The synthesized samples were characterized by FESEM/EDX/EDS elemental mapping, TEM/HRTEM, XRD, N2–sorption, UV–Vis DRS, PL and XPS techniques. Photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation was performed for the composite and well compared with the counter parts. In contrast to parent Cs2Nb4O11, the AgBr/Cs2Nb4O11 and Ag/AgBr/Cs2Nb4O11 composites exhibited extended absorption edges and improved photoabsorption in the visible region, which are discretely due to the intrinsic absorption of AgBr and SPR effect of metallic Ag nanoparticles. The PL results revealed that the ternary composite showed a better separation of photo-generated charge carriers. Amongst the samples, the Ag/AgBr/Cs2Nb4O11 composite exhibited the highest photoactivity, degrading 97% of RhB after 60 min of visible-light irradiation. The correlation between the structural properties and the origin of the enhanced photocatalytic activity of the Ag/AgBr/Cs2Nb4O11 composite is discussed in detail, and possible reaction mechanism is proposed. Moreover, the good recycling ability (up to 5 cycles) suggests that the Ag/AgBr/Cs2Nb4O11 composite can be exploited successfully in the wastewater treatment.

Graphical Abstract

Keywords

Ag/AgBr/Cs2Nb4O11 Surface plasmon resonance Photocatalysis RhB Reactive oxygen species 

Notes

Acknowledgements

The Science and Engineering Research Board (SERB) (Grant No. EMR/2016/001533), Department of Science and Technology (DST), India, is now acknowledged for its financial support. MV thanks to UGC, New Delhi for the award of BSR fellowship [F.18–1/2011(BSR)]. The authors would like to thank Mr. A. Harikrishna, CSIR-CCMB, for his technical assistance in TEM/HRTEM analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2827_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 Details of the textural characteristics block diagram of the photo-reactor, XRD spectra and FESEM image of the used Ag/AgBr/CsNbO catalysts. (DOC 1146 kb)

References

  1. 1.
    Dong H, Sun J, Chen G, Li C, Hu Y, Chade L (2014) Phys Chem Chem Phys 16:23915–23921CrossRefGoogle Scholar
  2. 2.
    Naveen Kumar V, Ravi G, Raju Reddy J, Suresh P, Muniratnam NR, Prasad G, Vithal M (2014) J Am Ceram Soc 97:1829–1836CrossRefGoogle Scholar
  3. 3.
    Chakrabarti S, Dutta BK (2004) J Hazard Mater 112:269–278CrossRefGoogle Scholar
  4. 4.
    Hou W, Cronin SB (2013) Adv Funct Mater 23:1612–1619CrossRefGoogle Scholar
  5. 5.
    Chong MN, Jin B, Chow CKW, Saint C (2010) Water Res 44:2997–3027CrossRefGoogle Scholar
  6. 6.
    Zhang L, Yu D, Wu M, Lin J (2019) Catal Lett 149:882–890CrossRefGoogle Scholar
  7. 7.
    Singh M, Jampaiah D, Kandjani AE, Sabri YM, Gaspera ED, Reineck P, Judd M, Langley J, Cox N, van Emdben J, Mayes E, Gibson BC, Bhargava SK, Ramanathan R, Bansal V (2018) Nanoscale 10:6039–6050CrossRefGoogle Scholar
  8. 8.
    Yi J, Song J, Mo H, Yang Y (2018) Adv Powder Technol 29:319–324CrossRefGoogle Scholar
  9. 9.
    Ma L, Yang X, Zhou ZQ, Lu M (2016) RSC Adv 6:97808–97817CrossRefGoogle Scholar
  10. 10.
    Li J, Liu F, Li Y (2018) New J Chem 42:12054–12061CrossRefGoogle Scholar
  11. 11.
    Xu L, Zhang FY, Song XY, Yin Z, Bu Y (2015) J Mater Chem A 3:5923–5933CrossRefGoogle Scholar
  12. 12.
    Peng T, Hu C, Hu X, Zhou X, Qu J (2012) Catal Lett 142:646–654CrossRefGoogle Scholar
  13. 13.
    Yanyuan W, Hanming D (2011) Chin J Catal 32:36–45CrossRefGoogle Scholar
  14. 14.
    Wang P, Huang BB, Lou ZZ, Zhang XY, Qin XY, Dai Y, Zheng ZK, Wang XN (2010) Chem Eur J 16:538–544CrossRefGoogle Scholar
  15. 15.
    Wei D, Tian F, Lu Z, Yang H, Chen R (2016) RSC Adv 6:52264–52270CrossRefGoogle Scholar
  16. 16.
    Li S, Jiang W, Hua S, Liu Y, Liu J (2018) Mater Lett 224:29–32CrossRefGoogle Scholar
  17. 17.
    Zhu Q, Wang W-S, Lin L, Gao G-Q, Guo H-L, Du H, Xu A-W (2013) J Phys Chem C 117:5894–5900CrossRefGoogle Scholar
  18. 18.
    Wang H, Wu Y, Wu P, Chen S, Guo X, Meng G, Peng B, Wu J, Liu Z (2017) Front Mater Sci 11:130–138CrossRefGoogle Scholar
  19. 19.
    Li JJ, Xie YL, Zhong YJ, Hu Y (2015) J Mater Chem A 3:5474–5548CrossRefGoogle Scholar
  20. 20.
    Tian GH, Chen YJ, Meng XY, Zhou J, Zhou W, Pan K, Tian CG, Ren ZY, Fu HG (2013) Chem Plus Chem 78:117–123Google Scholar
  21. 21.
    Shi L, Liang L, Ma J, Meng Y, Zhong S, Wang F, Sun J (2014) Ceram Int 40:3495–3502CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Zhu R, Yan L, Fu H, Xi Y, Zhou H, Zhu G, Zhu J, He H (2018) Appl Catal B 239:280–289CrossRefGoogle Scholar
  23. 23.
    Luo J, Yang XY, Li DL (2010) Adv Mater Res 113–116:1945–1950CrossRefGoogle Scholar
  24. 24.
    Miseki Y, Kusama H, Sugihara H, Sayama K (2010) J Phys Chem Lett 1:1196–1200CrossRefGoogle Scholar
  25. 25.
    Kako T, Zou Z, Ye J (2005) Res Chem Intermed 31:359–364CrossRefGoogle Scholar
  26. 26.
    Qiao X, Seo HJ (2014) Mater Lett 136:322–324CrossRefGoogle Scholar
  27. 27.
    Miseki Y, Kato H, Kudo A (2005) Chem Lett 34:54–55CrossRefGoogle Scholar
  28. 28.
    Liu Q, Yu Z, Li M, Hou Y, Sun L, Wang L, Peng Z, Chen D, Liu Y (2017) Mol Catal 432:57–63CrossRefGoogle Scholar
  29. 29.
    Ding M-Y, Meng D-S, Tang Y-H, Liu C-B, Luo S-L (2015) Chem Pap 69:1411–1420CrossRefGoogle Scholar
  30. 30.
    Gasperin PM (1981) Acta Cryst B 37:641–643CrossRefGoogle Scholar
  31. 31.
    Zhang X, Wang C, Yu C, Teng B, He Y, Zhao L, Fan M (2018) J Environ Sci 63:68–75CrossRefGoogle Scholar
  32. 32.
    Shen K, Gondal MA, Siddique RG, Shi S, Wang S, Sun J, Xu Q (2014) Chin J Catal 35:78–84CrossRefGoogle Scholar
  33. 33.
    Datta A, Kapri S, Bhattacharyya S (2015) Green Chem 17:1572–1580CrossRefGoogle Scholar
  34. 34.
    Li TB, Chen G, Zhou C, Shen ZY, Jin RC, Sun JX (2011) Dalton Trans 40:6751–6758CrossRefGoogle Scholar
  35. 35.
    Tian L, Sun K, Rui Y, Cui W, An W (2018) RSC Adv 8:29309–29320CrossRefGoogle Scholar
  36. 36.
    Cui W, Wang H, Liang Y, Han B, Liu L, Hu J (2013) Chem Eng J 230:10–18CrossRefGoogle Scholar
  37. 37.
    Venkataswamy P, Sudhakar Reddy Ch, Ravi G, Sadanandam G, Naveen Kumar V, Vithal M (2018) Electron Mater Lett 14:446–460CrossRefGoogle Scholar
  38. 38.
    Xu H, Cao Y, Xie J, Hu J, Li Y, Jia D (2018) Mater Res Bull 102:342–352CrossRefGoogle Scholar
  39. 39.
    Kim WH, Woo S, Kim K-P, Kwon S-M, Kim D-H (2019) Nanoscale Res Lett 14:25–33CrossRefGoogle Scholar
  40. 40.
    Kong X, Guo Z, Lu Q, Huang J, Cao L, Yin L, Li J, Feng Q (2016) J Alloys Compd 686:48–54CrossRefGoogle Scholar
  41. 41.
    Cai Y, Chang S, Liu Y, Shen Y, Li F, Li L, Zhu S, Zheng X (2018) J Mater Sci: Mater Electron 29:17602–17611Google Scholar
  42. 42.
    Lu L, Kong L, Jiang Z, Lai HH, Xiao T, Edwards PP (2012) Catal Lett 142:771–778CrossRefGoogle Scholar
  43. 43.
    Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2009) Inorg Chem 48:10697–10702CrossRefGoogle Scholar
  44. 44.
    Xu Y, Liu Q, Liu C, Zhai Y, Xie M, Huang L, Xu H, Li H, Jing J (2018) J Colloid Interface Sci 512:555–566CrossRefGoogle Scholar
  45. 45.
    Cui H-J, Huang H-Z, Yuan B (2015) Geochem Trans 16:1–8CrossRefGoogle Scholar
  46. 46.
    Fu M-L, Das M, Bhattacharyya KG (2014) J Mol Catal A: Chem 391:121–129CrossRefGoogle Scholar
  47. 47.
    Harish S, Archana J, Navaneethan M, Ponnusamy S, Singh A, Gupta V, Aswal DK, Ikeda H, Hayakawa Y (2017) RSC Adv 7:34366–34375CrossRefGoogle Scholar
  48. 48.
    Venkataswamy P, Jampaiah D, Kandjani AE, Sabri YM, Reddy BM, Vithal M (2018) Res Chem Intermed 44:2523–2543CrossRefGoogle Scholar
  49. 49.
    Kuai L, Geng BY, Chen XT, Zhao YY, Luo YC (2010) Langmuir 26:18723–18727CrossRefGoogle Scholar
  50. 50.
    Zhang J, Nosaka Y (2014) J Phys Chem C 118:10824–10832CrossRefGoogle Scholar
  51. 51.
    Shah SAS, Kim YH, Park AR, Rauf A, Yoo PJ (2015) Mater Express 5:401–409CrossRefGoogle Scholar
  52. 52.
    Sudhakar Reddy Ch, Ravi G, Venkataswamy P, Sreenu K, Uzma B, Vithal M (2017) J Chem Technol Biotechnol 92:2746–2759CrossRefGoogle Scholar
  53. 53.
    Naveen Kumar V, Raju Reddy J, Ravi G, Ravinder G, Radha V, Venkataswamy P, Vithal M (2016) Chem Sel 1:2783–2791Google Scholar
  54. 54.
    Li S, Wang X, He Q, Chen Q, Xu Y, Yang H, Lu M, Wei F, Liu X (2016) Chin J Catal 37:367–377CrossRefGoogle Scholar
  55. 55.
    Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Wangbo M (2009) Chem Eur J 15:1821–1824CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Perala Venkataswamy
    • 1
  • Manasa Sunku
    • 1
  • Ravi Gundeboina
    • 1
  • Radha Velchuri
    • 1
  • M. Vithal
    • 1
    Email author
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations