Advertisement

Catalysis Letters

, Volume 149, Issue 10, pp 2823–2835 | Cite as

Influence of Support Acidity of Pt/Nb2O5 Catalysts on Selectivity of CO2 Hydrogenation

  • Si Bui Trung Tran
  • Hanseul Choi
  • Sunyoung Oh
  • Jeong Young ParkEmail author
Article
  • 220 Downloads

Abstract

In solid acid catalysis, understanding the impact of support acidity on catalytic performance has remained a controversial issue. The selected catalytic systems often rely on mixing different substances to control the degree of acidity, which in turn, also modifies other parameters in the system, making it challenging to perform a definitive study. To specifically investigate the role of support acidity, we performed a systematic study employing Nb2O5 as the catalyst support, which acidity can be controlled by calcination. The catalytic behavior of the fabricated Pt/Nb2O5 catalysts was evaluated using CO2 hydrogenation to methanol (MeOH) and dimethyl ether (DME). An increase in the acidity of the support resulted in an improvement in the CO2 conversion owing to the strong interaction between the Pt and the catalyst support, but it was detrimental for the production of MeOH because of the unfavorable adsorption of CO2 molecules and the formation of carbon-containing species on the surface of the support with high acidity. DME selectivity was enhanced with an increase in catalyst acidity, confirming the role of solid acids for the production of DME from CO2 reduction.

Graphical Abstract

By controlling the calcination temperature of Nb2O5, tunable support acidity was obtained. CO2 conversion increased while the selectivity of methanol and dimethyl ether decreased with increasing support acidity.

Keywords

Pt-based catalyst Niobium oxide Support acidity effect CO2 hydrogenation Methanol synthesis Dimethyl ether synthesis 

Notes

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) [IBS-R004].

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest.

Supplementary material

10562_2019_2822_MOESM1_ESM.pdf (241 kb)
Supplementary material 1 (PDF 241 kb)

References

  1. 1.
    Park JY, Somorjai GA (2016) Catal Lett 146:1CrossRefGoogle Scholar
  2. 2.
    Gupta P, Paul S (2014) Catal Today 236:153CrossRefGoogle Scholar
  3. 3.
    Tanabe K, Hölderich WF (1999) Appl Catal A 181:399CrossRefGoogle Scholar
  4. 4.
    Hattori H (2015) Appl Catal A 504:103CrossRefGoogle Scholar
  5. 5.
    Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115:2781CrossRefPubMedGoogle Scholar
  6. 6.
    Kim SM, Lee SW, Moon SY, Park JY (2016) J Phys Condens Matter 28:254002CrossRefPubMedGoogle Scholar
  7. 7.
    Na K, Alayoglu S, Ye R, Somorjai GA (2014) J Am Chem Soc 136:17207CrossRefPubMedGoogle Scholar
  8. 8.
    Silva A, Wilson K, Lee AF, Dos Santos VC, Cons Bacilla AC, Mantovani KM, Nakagaki S (2017) Appl Catal B 205:498CrossRefGoogle Scholar
  9. 9.
    Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) J Am Chem Soc 133:4224CrossRefPubMedGoogle Scholar
  10. 10.
    Ziolek M, Sobczak I (2017) Catal Today 285:211CrossRefGoogle Scholar
  11. 11.
    Tanabe K, Okazaki S (1995) Appl Catal A 133:191CrossRefGoogle Scholar
  12. 12.
    Moon SY, Naik B, Jung C, Qadir K, Park JY (2016) Catal Today 265:245CrossRefGoogle Scholar
  13. 13.
    Park D, Kim SM, Kim SH, Yun JY, Park JY (2014) Appl Catal B 480:25CrossRefGoogle Scholar
  14. 14.
    Jehng JM, Wachs IE (1991) J Phys Chem 95:7373CrossRefGoogle Scholar
  15. 15.
    Nico C, Monteiro T, Graça MPF (2016) Prog Mater Sci 80:1CrossRefGoogle Scholar
  16. 16.
    Murayama T, Chen J, Hirata J, Matsumoto K, Ueda W (2014) Catal Sci Technol 4:4250CrossRefGoogle Scholar
  17. 17.
    Tanabe K (1987) Mater Chem Phys 17:217CrossRefGoogle Scholar
  18. 18.
    Riaz A, Zahedi G, Klemeš JJ (2013) J Clean Prod 57:19CrossRefGoogle Scholar
  19. 19.
    Bakhtyari A, Rahimpour MR (2018) Chapter 10—methanol to dimethyl ether. In: Dalena F (ed) Methanol. Elsevier, Amsterdam, p 281CrossRefGoogle Scholar
  20. 20.
    Zhong C, Guo X, Mao D, Wang S, Wu G, Lu G (2015) RSC Adv 5:52958CrossRefGoogle Scholar
  21. 21.
    Guo X, Mao D, Lu G, Wang S, Wu G (2011) J Mol Catal A 345:60CrossRefGoogle Scholar
  22. 22.
    Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Wang H, Sun Y (2013) J Catal 298:51CrossRefGoogle Scholar
  23. 23.
    Hengne A, Bhatte KD, Ould CS, Saih Y, Basset JM, Huang KW (2018) ChemCatChem 10:1CrossRefGoogle Scholar
  24. 24.
    Silva RJ, Pimentel AF, Monteiro RS, Mota CJA (2016) J CO2 Util 15:83CrossRefGoogle Scholar
  25. 25.
    Gnanakumar ES, Chandran N, Kozhevnikov IV, Grau-Atienza A, Fernandez EVR, Sepulveda-Escribano A, Shiju NR (2019) Chem Eng Sci 194:2CrossRefGoogle Scholar
  26. 26.
    Porosoff MD, Yan B, Chen JD (2016) Energy Environ Sci 9:62CrossRefGoogle Scholar
  27. 27.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703CrossRefPubMedGoogle Scholar
  28. 28.
    Oh S, Back S, Doh WH, Moon SY, Kim JJ, Park JY (2017) RSC Adv 7:45003CrossRefGoogle Scholar
  29. 29.
    Bonura G, Cordaro M, Spadaro L, Cannilla C, Arena F, Frusteri F (2013) Appl Catal B 140–141:16CrossRefGoogle Scholar
  30. 30.
    Sousa LFD, Toniolo FS, Landi SM, Schmal M (2017) Appl Catal A 537:100CrossRefGoogle Scholar
  31. 31.
    Hernández MC, Otter HD, Weber JL, De Jong KP (2017) Appl Catal A 548:143CrossRefGoogle Scholar
  32. 32.
    Graça MPF, Meireles A, Nico C, Valente MA (2013) J Alloys Compd 553:177CrossRefGoogle Scholar
  33. 33.
    Trung TSB, Kim Y, Kang S, Kim S, Lee H (2015) Appl Catal A 505:319CrossRefGoogle Scholar
  34. 34.
    Li L, Wen X, Fu X, Wang F, Zhao N, Xiao F, Wei W, Sun Y (2010) Energy Fuels 24:5773CrossRefGoogle Scholar
  35. 35.
    Wang F, Xu L, Shi W, Zhang J, Wu K, Zhao Y, Li H, Li HX, Xu GQ, Chen W (2017) Nano Res 10:364CrossRefGoogle Scholar
  36. 36.
    Trung TSB, Choi HS, Oh S, Moon SY, Park JY (2018) RSC Adv 8:21528CrossRefGoogle Scholar
  37. 37.
    Briggs D (1979) Handbook of X-ray photoelectron spectroscopy. Elsevier, WoodburyGoogle Scholar
  38. 38.
    Crampton AS, Rötzer MD, Landman U, Heiz U (2017) ACS Catal 7:6738CrossRefGoogle Scholar
  39. 39.
    Ramaker DE, De Graaf J, Van Veen JAR, Koningsberger DC (2001) J Catal 203:7CrossRefGoogle Scholar
  40. 40.
    Wang Z, Kim KD, Zhou C, Chen M, Maeda N, Liu Z, Shi J, Baiker A, Hunger M, Huang J (2015) Catal Sci Technol 5:2788CrossRefGoogle Scholar
  41. 41.
    Pan Y, Liu C, Mei D, Ge Q (2010) Langmuir 26:5551CrossRefPubMedGoogle Scholar
  42. 42.
    Guo X, Mao D, Lu G, Wang S, Wu G (2010) J Catal 271:178CrossRefGoogle Scholar
  43. 43.
    Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Ind Eng Chem Res 55:3556CrossRefGoogle Scholar
  44. 44.
    Centi G, Perathoner S (2009) Catal Today 148:191CrossRefGoogle Scholar
  45. 45.
    Fujita SI, Moribe S, Kanamori Y, Kakudate M, Takezawa N (2001) Appl Catal A 207:121CrossRefGoogle Scholar
  46. 46.
    Toyir J, Ramı́rez de la Piscina P, Fierro JLG, Homs NS (2001) Appl Catal B 34:255CrossRefGoogle Scholar
  47. 47.
    Taylor PA, Rasmussen PB, Chorkendorff I (1995) J Chem Soc Faraday Trans 91:1267CrossRefGoogle Scholar
  48. 48.
    Yoshihara J, Parker SC, Schafer A, Campbell CT (1995) Catal Lett 31:313CrossRefGoogle Scholar
  49. 49.
    Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) Surf Sci 383:285CrossRefGoogle Scholar
  50. 50.
    Grabow LC, Mavrikakis M (2011) ACS Catal 1:365CrossRefGoogle Scholar
  51. 51.
    Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paal Z, Schlogl R (2006) J Catal 237:1CrossRefGoogle Scholar
  52. 52.
    Sápi A, Halasi G, Kiss J, Dobó DG, Juhász KL, Kolcsár VJ, Ferencz Z, Vári G, Matolin V, Erdőhelyi A, Kukovecz A, Kónya Z (2018) J Phys Chem C 122:5553CrossRefGoogle Scholar
  53. 53.
    Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes FE (2007) Chem Eng Sci 62:5062CrossRefGoogle Scholar
  54. 54.
    Raskó J (2003) J Catal 217:478CrossRefGoogle Scholar
  55. 55.
    Wang X, Hong Y, Shi H, Szanyi J (2016) J Catal 343:185CrossRefGoogle Scholar
  56. 56.
    Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Chem Eng J 170:471CrossRefGoogle Scholar
  57. 57.
    Wachs IE (1995) Colloid Surf A 105:143CrossRefGoogle Scholar
  58. 58.
    Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Chem Eng Process 82:150CrossRefGoogle Scholar
  59. 59.
    Kubelková L, Nováková J, Nedomová K (1990) J Catal 124:441CrossRefGoogle Scholar
  60. 60.
    Bandiera J, Naccache C (1991) Appl Catal 69:139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Si Bui Trung Tran
    • 1
  • Hanseul Choi
    • 1
    • 2
  • Sunyoung Oh
    • 1
    • 2
  • Jeong Young Park
    • 1
    • 2
    Email author
  1. 1.Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)DaejeonRepublic of Korea
  2. 2.Department of Chemistry and Graduate School of EEWSKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations