The Continuous Flow Ag/γ-Al2O3 Catalysed Preferential Hydrogenation of Octanal in an Octanal/Octene Mixture

  • Thashini Chetty
  • Venkata D. B. C. Dasireddy
  • Holger B. FriedrichEmail author


Ag/γ-Al2O3 catalysts, containing 5 and 25 wt% Ag, were synthesized by the slurry phase impregnation method. They were tested for the liquid phase continuous flow preferential hydrogenation of octanal in a mixture with octene. The catalysts were characterised by XRD, IR, BET, SEM, TEM and NH3-TPD. These catalysts showed strong preference for octanal hydrogenation, irrespective of reaction temperature or silver loading. A maximum octanal conversion of 90% with selectivity towards octanol of 94% was achieved over 25 wt% Ag/γ-Al2O3 at 180 °C with minimal octene conversion (< 3%).

Graphical Abstract


Selective hydrogenation Aldehydes Alkenes Silver Alumina 



We thank the NRF and SASOL for financial support. We also thank to Dr. N. Prinsloo (SASOL) for valuable discussions and the Electron Microscopy Unit at UKZN (Westville Campus).


  1. 1.
    Lim KH, Mohammad AB, Yudanov IV, Neyman KM, Bron M, Claus P, Rösch N (2009) J Phys Chem C 113:13231–13240CrossRefGoogle Scholar
  2. 2.
    Mahapatra M, Burkholder L, Garvey M, Bai Y, Saldin DK, Tysoe WT (2016) Nat Commun 7:12380CrossRefGoogle Scholar
  3. 3.
    Sun D, Yamada Y, Sato S, Ueda W (2016) Appl Catal B 193:75–92CrossRefGoogle Scholar
  4. 4.
    Li AY, Kaushik M, Li C-J, Moores A (2016) ACS Sustain Chem Eng 4:965–973CrossRefGoogle Scholar
  5. 5.
    Ma Z, Zaera F (2006) Heterogeneous catalysis by metals, encyclopedia of inorganic chemistry. Wiley, New YorkGoogle Scholar
  6. 6.
    Zaera F (2017) ACS Catal 7:4947–4967CrossRefGoogle Scholar
  7. 7.
    Bai G, Li F, Fan X, Wang Y, Qiu M, Ma Z, Niu L (2012) Catal Commun 17:126–130CrossRefGoogle Scholar
  8. 8.
    Chetty T, Dasireddy VDBC, Callanan LH, Friedrich HB (2018) ACS Omega 3:7911–7924CrossRefGoogle Scholar
  9. 9.
    Chetty T, Friedrich HB, Dasireddy VDBC, Govender A, Mohlala PJ, Barnard W (2014) ChemCatChem 6:2384–2393CrossRefGoogle Scholar
  10. 10.
    Nagase Y, Hattori H, Tanabe K (1983) Chem Lett 12:1615–1618CrossRefGoogle Scholar
  11. 11.
    Paun C, Slowik G, Lewin E, Sa J (2016) RSC Adv 6:87564–87568CrossRefGoogle Scholar
  12. 12.
    Hattori H (1995) Chem Rev 95:537–558CrossRefGoogle Scholar
  13. 13.
    Hattori H, Ono Y (2015) Solid acid catalysis: from fundamentals to applications. Pan Stanford, SingaporeCrossRefGoogle Scholar
  14. 14.
    He Y, Liu Y, Yang P, Du Y, Feng J, Cao X, Yang J, Li D (2015) J Catal 330:61–70CrossRefGoogle Scholar
  15. 15.
    Liu Y, Zhao J, He Y, Feng J, Wu T, Li D (2017) J Catal 348:135–145CrossRefGoogle Scholar
  16. 16.
    Lin H, Zheng J, Zheng X, Gu Z, Yuan Y, Yang Y (2015) J Catal 330:135–144CrossRefGoogle Scholar
  17. 17.
    Ferullo R, Branda MM, Illas F (2010) J Phys Chem Lett 1:2546–2549CrossRefGoogle Scholar
  18. 18.
    Valand J, Dasireddy VDBC, Singh S, Friedrich HB (2017) Catal Lett 147:525–538CrossRefGoogle Scholar
  19. 19.
    Miller SF, Friedrich HB, Holzapfel CW, Dasireddy VDBC (2015) ChemCatChem 7:2628–2636CrossRefGoogle Scholar
  20. 20.
    Valand J, Mahomed AS, Singh S, Friedrich HB (2016) J Porous Mater 23:175–183CrossRefGoogle Scholar
  21. 21.
    Koichumanova K, Sai Sankar Gupta KB, Lefferts L, Mojet BL, Seshan K (2015) Phys Chem Chem Phys 17:23795–23804CrossRefGoogle Scholar
  22. 22.
    Wang W, Zhang W, Chen Y, Wen X, Li H, Yuan D, Guo Q, Ren S, Pang X, Shen B (2018) J Catal 362:94–105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thashini Chetty
    • 1
  • Venkata D. B. C. Dasireddy
    • 1
  • Holger B. Friedrich
    • 1
    Email author
  1. 1.Catalysis Research Group, School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations