Acylation of Phenols, Alcohols, Thiols, Amines and Aldehydes Using Sulfonic Acid Functionalized Hyper-Cross-Linked Poly(2-naphthol) as a Solid Acid Catalyst

  • Reddi Mohan Naidu Kalla
  • Sirigireddy Sudharsan Reddy
  • Il KimEmail author


The hyper-cross-linked porous poly(2-naphthol) fabricated by the Friedel–Crafts alkylation of 2-naphthol has been functionalized with sulfonic acid to obtain a solid acid catalyst. The catalyst is applied for the protection of phenol, alcohols, thiols, amines and aldehydes with acetic anhydride at room temperature. The catalytic protection using the new solid acid is featured by achieving high yield at neat condition, needing no aqueous work-up and/or chromatographic separation, and showing excellent recycling efficiency, suggesting the potential of this sulfonated porous polymers as a new protection protocol in a wide range of sustainable chemical reactions.

Graphical Abstract

An efficient and eco-friendly method has been developed for the protection of phenols, alcohols, thiols, amines and aldehydes with acetic anhydride in presence of sulfonic-acid-functionalized hyper-cross-linked poly(2-naphthol) as a solid acid catalyst.


Acylation Crosslinked polymers Heterogeneous catalysis Poly(2-naphtol) Protection Solid acid 



This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (2018R1D1A1A09081809). The authors are also grateful to the BK21 PLUS Program for partial financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Greene TW, Wuts PGM (1999) In protective groups in organic synthesis. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Sefkow M, Kaatz H (1999) Tetrahedron Lett 40:6561–6562CrossRefGoogle Scholar
  3. 3.
    Arjona O, Medel R, Rojas J, Costa AM, Vilarrasa J (2003) Tetrahedron Lett 44:6369–6373CrossRefGoogle Scholar
  4. 4.
    Kalla RMN, Lim J, Bae J, Kim I (2017) Tetrahedron Lett 58:1595–1599CrossRefGoogle Scholar
  5. 5.
    Kalla RMN, Park H, Hoang TTK, Kim I (2014) Tetrahedron Lett 55:5373–5376CrossRefGoogle Scholar
  6. 6.
    Kalla RMN, Kim MR, Kim YN, Kim I (2016) New J Chem 40:687–693CrossRefGoogle Scholar
  7. 7.
    Gangadhar KN, Vijay M, Prasad RNB, Devi BLAP (2013) Green Sus Chem 3:122–128CrossRefGoogle Scholar
  8. 8.
    Khaligh NG (2012) J Mol Catal A 363–364:90–100CrossRefGoogle Scholar
  9. 9.
    Vedejs E, Diver ST (1993) J Am Chem Soc 115:3358–3359CrossRefGoogle Scholar
  10. 10.
    Tamaddon F, Amrollahi MA, Sharafat L (2005) Tetrahedron Lett 46:7841–7844CrossRefGoogle Scholar
  11. 11.
    Kumar P, Pandey RK, Bodas MS, Dagade SP, Dongare MK, Ramaswamy AV (2002) J Mol Catal A 181:207–213CrossRefGoogle Scholar
  12. 12.
    Maly KE (2009) J Mater Chem 19:1781–1787CrossRefGoogle Scholar
  13. 13.
    Sun Q, Dai Z, Meng X, Xiao F-S (2015) Chem Soc Rev 44:6018–6034CrossRefGoogle Scholar
  14. 14.
    Kalla RMN, Varyambath A, Kim MR, Kim I (2017) Appl Catal A 538:9–18CrossRefGoogle Scholar
  15. 15.
    Ding S-Y, Dong M, Wang Y-W, Chen Y-T, Wang H-Z, Su C-Y, Wang W (2016) J Am Chem Soc 138:3031–3037CrossRefGoogle Scholar
  16. 16.
    Zhou Y-B, Wang Y-Q, Ning LC, Ding ZC, Wang W-L, Ding CK, Li R-H, Chen J-J, Lu X, Ding Y-J, Zhan Z-P (2017) J Am Chem Soc 139:3966–3969CrossRefGoogle Scholar
  17. 17.
    Liu T-T, Liang J, Huang Y-B, Cao R (2016) Chem Commun 52:13288–13291CrossRefGoogle Scholar
  18. 18.
    Xu H, Gao J, Jiang DL (2015) Nat Chem 7:905–912CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xiong Y, Ge J, Lin R, Chen C, Peng Q, Wang D, Li Y (2018) Chem Commun 54:2796–2799CrossRefGoogle Scholar
  20. 20.
    Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) J Chem Phys 103:6951–6958CrossRefGoogle Scholar
  21. 21.
    Trewin A, Willock DJ, Cooper AI (2008) J Phys Chem C 112:20549–20559CrossRefGoogle Scholar
  22. 22.
    Duren T, Millange F, Fe´rey G, Walton KS, Snurr RQ (2007) J Phys Chem C 111:15350–15356CrossRefGoogle Scholar
  23. 23.
    Hart KE, Abbott LJ, Colina CM (2013) Mol Simul 39:397–404CrossRefGoogle Scholar
  24. 24.
    Russo PA, Antunes MM, Neves P, Wiper PV, Fazio E, Neri F, Barreca F, Mafra L, Pillinger M, Pinna N, Valente AA (2014) J Mater Chem A 2:11813–11824CrossRefGoogle Scholar
  25. 25.
    Ho TTM, Bremmell KE, Krasowska M, Stringer DN, Thierry B, Beattie DA (2015) Soft Matter 11:2110–2124CrossRefGoogle Scholar
  26. 26.
    Veisi H, Taheri S, Hemmati S (2016) Green Chem 18:6337–6348CrossRefGoogle Scholar
  27. 27.
    Iranpoor N, Firouzabadi H, Davan EE (2013) Tetrahedron Lett 54:1813–1816CrossRefGoogle Scholar
  28. 28.
    Mojtahedi MM, Samadian S (2013) J Chem 2013:1–7CrossRefGoogle Scholar
  29. 29.
    Khan AT, Islam S, Majee A, Chattopadhyay T, Ghosh S (2005) J Mol Catal A 239:158–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Reddi Mohan Naidu Kalla
    • 1
  • Sirigireddy Sudharsan Reddy
    • 1
  • Il Kim
    • 1
    Email author
  1. 1.BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations