Advertisement

Mont-K10 Supported Fe(II) Schiff-Base Complex as an Efficient Catalyst for Hydrogenation of Ketones

  • Samim Sultana
  • Geetika BorahEmail author
  • Pradip. K. GogoiEmail author
Article
  • 4 Downloads

Abstract

A new Fe(II) Schiff base complex anchored on mont-K10 (Fe@imine-mont-K10) was synthesized and extensively characterized by FTIR, powder X-ray diffraction, SEM–EDX, TEM, ESR, X-ray photoelectron spectroscopy (XPS), BET surface area measurement, solid state 29Si NMR and ICP-AES analysis. The catalytic activity of the complex was investigated for hydrogenation of ketones. The results indicated that it exhibited good catalytic activity for hydrogenation of aromatic as well as aliphatic ketones in i-PrOH/CH3CN (1:1) using Na-i-OPr as base at 80 °C resulting in moderate to excellent isolated yields (51–99%) of their corresponding products. The catalyst shows good reusability.

Graphical Abstract

Keywords

Fe@imine-mont-K10 Hydrogenation Aromatic Aliphatic 

Notes

Acknowledgements

The authors thank SAIF, IIT Bombay for ESR and ICP-AES facilities, SAIF, NEHU, Shillong for TEM and 1H-NMR facilities, SAIF, IISC Bangalore for 29Si NMR facilities, SAIF, STIC, Kochi University, Kochi for 1H-NMR facilities, ACMS, IIT Kanpur for X-ray photoelectron spectroscopic facilities and BIT, Bangalore for BET surface area measurement facilities. S. Sultana gratefully thanks UGC-SAP-DRS-I programme (2016-2021) and UGC-Maulana Azad National Fellowship, Delhi for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Supplementary material

10562_2019_2810_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3293 kb)

References

  1. 1.
    Çalık HS, Ispir E, Karabuga S, Aslantas M (2016) J Organomet Chem 801:122Google Scholar
  2. 2.
    Foubelo F, Najera C, Yus M (2015) Tetrahedron 26:769Google Scholar
  3. 3.
    Margalef J, Pàmies O, Diéguez M (2016) Tetrahedron Lett 57:1301Google Scholar
  4. 4.
    Zhou L, Gu H, Yan X (2009) Catal Lett 132:16Google Scholar
  5. 5.
    Saluzzo C, Lemaire M (2002) Adv Synth Catal 344:915Google Scholar
  6. 6.
    Wang B, Li C, He B, Qi J, Liang C (2017) J Energy Chem 26:799Google Scholar
  7. 7.
    Magubane MN, Alam MG, Ojwach SO, Munro OQ (2017) J Mol Struct 1135:197Google Scholar
  8. 8.
    Baysal A, Karakas DE, Meric N, Ak B, Aydemir M, Durap F (2017) Transit Met Chem 42:365Google Scholar
  9. 9.
    Pattanayak P, Parua SP, Patra D, Lai CK, Brandao P, Felix V, Chattopadhyay S (2015) Inorg Chim Acta 429:122Google Scholar
  10. 10.
    Olguín J, Sandoval MAP (2017) J Organomet Chem 848:309Google Scholar
  11. 11.
    Oruç ZI, Gok L, Türkmen H, Sahin O, Büyükgüngor O, Çetinkaya B (2016) J Organomet Chem 807:36Google Scholar
  12. 12.
    Sharma S, Kumar M, Nayal OS, Thakur MS, Bhatt V, Kumar N, Singh B, Sharma U (2016) Asian J Org Chem 5:1471Google Scholar
  13. 13.
    Aydemir M, Meric N, Kayan C, Ok F, Baysal A (2013) Inorg Chim Acta 398:1Google Scholar
  14. 14.
    Albrecht M, Crabtree RH, Mata J, Peris E (2002) Chem Commun.  https://doi.org/10.1039/B109491B Google Scholar
  15. 15.
    Shen Y, Chen Q, Lou LL, Yu K, Ding F, Liu S (2010) Catal Lett 137:104Google Scholar
  16. 16.
    Landaeta VR, Rosa ADSL, Lugo RER (2018) Inorg Chim Acta 470:303Google Scholar
  17. 17.
    Ramasamy B, Gangwar MK, Ghosh P (2017) Eur J Inorg Chem 2017:3253Google Scholar
  18. 18.
    He L, Ni J, Wang LC, Yu FJ, Cao Y, He HY, Fan KN (2009) Chem Eur J 15:11833Google Scholar
  19. 19.
    Su FZ, He L, Ni J, Cao Y, He HY, Fan KN (2008) Chem Commun 0:3531Google Scholar
  20. 20.
    Alonso F, Riente P, Reinoso FR, Martínez JR, Escribano AS, Yus M (2008) J Catal 260:113Google Scholar
  21. 21.
    Alonso F, Riente P, Reinoso FR, Martínez JR, Escribano AS, Yus M (2009) Chem Cat Chem 1:75Google Scholar
  22. 22.
    Gracia MJ, Campelo JM, Losada E, Luque R, Marinas JM, Romero AA (2009) Org Biomol Chem 7:4821Google Scholar
  23. 23.
    Kilic A, Kaya İH, Ozaslan I, Aydemir M, Durap F (2018) Catal Commun 111:42Google Scholar
  24. 24.
    Gupta KC, Sutar AK (2008) Coord Chem Rev 252:1420Google Scholar
  25. 25.
    Pretorius R, Mazloomi Z, Albrecht M (2017) J Organomet Chem 845:196Google Scholar
  26. 26.
    Suganthy PK, Prabhu RN, Sridevi VS (2015) Polyhedron 88:57Google Scholar
  27. 27.
    Toubiana J, Medina L, Sasson Y (2014) Mod Res Catal 3:68Google Scholar
  28. 28.
    Zeng L, Wu F, Li YY, Dong ZR, Gao JX (2014) J Organomet Chem 762:34Google Scholar
  29. 29.
    Dayan S, Ozpozan NK, Ozdemir N, Dayan O (2014) J Organomet Chem 770:21Google Scholar
  30. 30.
    Sonnenberg JF, Coombs N, Dube PA, Morris RH (2012) J Am Chem Soc 134:5893Google Scholar
  31. 31.
    He R, Cui P, Pi D, Sun Y, Zhou H (2017) Tetrahedron Lett 58:3571Google Scholar
  32. 32.
    Mezzetti A (2017) Isr J Chem 57:1Google Scholar
  33. 33.
    Smith SAM, Prokopchuk DE, Morris RH (2017) Isr J Chem 57:1Google Scholar
  34. 34.
    Gong W, Chen C, Fan R, Zhang H, Wang G, Zhao H (2018) Fuel 231:165Google Scholar
  35. 35.
    Perez M, Elangovan S, Spannenberg A, Junge K, Beller M (2016) Chem Sus Chem 9:1Google Scholar
  36. 36.
    Wang D, Voisine AB, Sortais JB (2018) Catal Commun 105:31Google Scholar
  37. 37.
    Kumar BS, Amali AJ, Pitchumani K (2018) Molecular Catal 448:153Google Scholar
  38. 38.
    Li YY, Yu SL, Shen WY, Gao JX (2015) Acc Chem Res 48:2587Google Scholar
  39. 39.
    Nagashima H (2017) Bull Chem Soc Jpn 90:761Google Scholar
  40. 40.
    Arai M, Zhao F (2015) Catalysts 5:868Google Scholar
  41. 41.
    Gupta KC, Sutar AK (2007) J Mol Catal A: Chem 272:64Google Scholar
  42. 42.
    Parida KM, Sahoo M, Singha S (2010) J Mol Catal A 329:7Google Scholar
  43. 43.
    Singha S, Sahoo M, Parida KM (2011) Dalton Trans 40:11838Google Scholar
  44. 44.
    Sahoo M, Parida KM (2018) Chemistry Select 3:3092Google Scholar
  45. 45.
    Parida KM, Sahoo M, Singha S (2010) J Catal 276:161Google Scholar
  46. 46.
    Wang R, Wang J, Zi H, Xia Y, Wang H, Liu X (2017) Mol Catal 441:168Google Scholar
  47. 47.
    Bata P, Zsigmond A, Gyemant M, Czegledi A, Kluson P (2015) Res Chem Intermed 41:9281Google Scholar
  48. 48.
    Bata P, Notheisz F, Kluson P, Zsigmond A (2015) Appl Organometal Chem 29:45Google Scholar
  49. 49.
    Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K, Islam SM (2015) J Organomet Chem 776:170Google Scholar
  50. 50.
    Xu D, Zhou ZM, Dai L, Tang LW, Zhang J (2015) Bioorg Med Chem Lett 25:1961Google Scholar
  51. 51.
    Patil NM, Sasaki T, Bhanage BM (2016) ACS Sustain Chem Eng 4:429Google Scholar
  52. 52.
    Hudson R, Chazelle V, Bateman M, Roy R, Li CJ, Moores A (2015) ACS Sustain Chem Eng 3:814Google Scholar
  53. 53.
    Zhang JF, Zhong R, Zhou Q, Hong X, Huang S, Cui HZ, Hou XF (2017) Chem Cat Chem 9:2496Google Scholar
  54. 54.
    Azua A, Finn MT, Yi H, Dantas AB, Kostal AMV (2017) ACS Sustain Chem Eng 5:3963Google Scholar
  55. 55.
    Tao F (2014) Metal Nanoparticles for Catalysis: Advances and Applications, RSc Catalysis Series No. 17, ISSN-1757-6725, Royal Society of ChemistryGoogle Scholar
  56. 56.
    Farias M, Martinelli M, Rolim GK (2011) Appl Catal A 403:119Google Scholar
  57. 57.
    Yadav GD (2005) Catal Surv Asia 9:117Google Scholar
  58. 58.
    Kaur N, Kishore D (2012) J Chem Pharm Res 4:991Google Scholar
  59. 59.
    Huang TK, Wang R, Shi L, Lu X (2008) Catal Commun 9:1143Google Scholar
  60. 60.
    Parida KM, Varadwaj GBB, Sahu S, Sahoo PC (2011) Ind Eng Chem Res 50:7849Google Scholar
  61. 61.
    Varadwaj GBB, Sahu S, Parida KM (2011) Ind Eng Chem Res 50:8973Google Scholar
  62. 62.
    Barros VP, Faria AL, MacLeod TCO, Moraes LAB, Assis MD (2008) Int Biodeterior Biodegradation 61:337Google Scholar
  63. 63.
    Gogoi N, Bordoloi P, Borah G, Gogoi PK (2017) Catal Lett 147:539Google Scholar
  64. 64.
    Sultana S, Borah G, Gogoi PK (2018) Appl Organometal Chem 1:1–10.  https://doi.org/10.1002/aoc.4595 Google Scholar
  65. 65.
    Saikia PK, Sarmah PP, Borah BJ, Saikia L, Dutta DK (2016) J Mol Catal A 412:27Google Scholar
  66. 66.
    Ahangaran F, Hassanzadeh A, Nouri S (2013) Int Nano Lett 3:23Google Scholar
  67. 67.
    Moosvi SK, Majid K, Ara T (2016) Mat Res 19:983Google Scholar
  68. 68.
    Huang G, Zhang C, Long Y, Wynn J, Liu Y, Wang W, Gao J (2013) Nanotechnology 24:395601.  https://doi.org/10.1088/0957-4484/24/39/395601 Google Scholar
  69. 69.
    Bhattacharyya KG, Gupta SS (2006) Sep Purif Technol 50:388Google Scholar
  70. 70.
    Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Green Chem 18:1327Google Scholar
  71. 71.
    Baltrusaitis J, Cwiertny DM, Grassian VH (2007) Phys Chem Chem Phys 9:5542Google Scholar
  72. 72.
    Wang X, Wu G, Wei W, Sun Y (2010) Catal Lett 136:96Google Scholar
  73. 73.
    Magubane MN, Nyamato GS, Ojwach SO, Munro OQ (2016) RSC Adv 6:65205Google Scholar
  74. 74.
    Wang F, Zhang Z (2017) ACS Sustain Chem Eng 5:942Google Scholar
  75. 75.
    Li J, Liu J, Zhou H, Fu Y (2016) Chemsuschem 9:1339Google Scholar
  76. 76.
    Bala MD, Ikhile MI (2014) J Mol Catal A 385:98Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryDibrugarh UniversityDibrugarhIndia

Personalised recommendations