Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the β-Pinene with Alkyl Alcohols

  • Henrique Priori Polo
  • Neide Paloma Goncalves Lopes
  • Márcio José da SilvaEmail author


In this work, we investigated the activity of Keggin heteropolyacid catalysts (i.e., H3PW12O40, H3PMo12O40 and H4SiW12O40) in β-pinene reactions with alkyl alcohols (i.e. methyl, ethyl, propyl, sec-propyl, butyl and sec-butyl alcohols), and exploring the different aspects that drive the selectivity of this process. We have found that carbon skeletal rearrangements and isomerization providing intermediate carbocations that controlling the reaction selectivity. β-pinene was preferentially converted to α-terpinyl ion which undergoes a nucleophilic attack of alcohol providing alkyl alcohol. Bornyl ion was converted to bornyl and fenchyl ethers. The other secondary products were β-pinene isomers obtained from bornyl and α-terpinyl carbocations. Phosphotungstic acid (i.e., H3PW12O40) was the most active catalyst and selective toward the main product (α-terpinyl alkyl ether); the highest conversion (ca. 96%) and ether selectivity (ca. 61%) was achieved in the reactions with β-pinene. Although having also been alkoxylate, α-pinene was less reactive (ca. 40%), while camphene and limonene remained unreactive under reaction conditions studied. An increase of temperature resulted in an improvement on conversion of β-pinene and selectivity toward α-terpinyl methyl ether. Similarly, the H3PW12O40 concentration played a crucial role on reaction selectivity. This work presents positive features such as a short reaction time, high atom economy, mild reaction conditions (i.e., low temperature and room pressure). Even though soluble the catalyst was easily recovered by liquid -liquid extraction and efficiently reused.

Graphical Abstract


Keggin heteropolyacids Terpenic ethers β-pinene Catalytic alkoxylation 



The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.


  1. 1.
    Gallezot P (2012) Chem Soc Rev 41:1538CrossRefGoogle Scholar
  2. 2.
    Salakhutdinov NF, Volcho KP, Yarovaya OI (2017) Pure Appl Chem 89(8):1105CrossRefGoogle Scholar
  3. 3.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411CrossRefGoogle Scholar
  4. 4.
    Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses. John Wiley & sons, New JerseyCrossRefGoogle Scholar
  5. 5.
    Neuenschwander U, Guignard F, Hermans I (2010) Chem Sus Chem 3:75CrossRefGoogle Scholar
  6. 6.
    de Paula FGF, Berllini L, da Silva MJ (2013) Catal Commun 42:129CrossRefGoogle Scholar
  7. 7.
    Coelho JV, Oliveira LCA, Moura FCC, de Souza PP, Silva CA, Batista KB, da Silva MJ (2012) Appl Catal A 419–420:215CrossRefGoogle Scholar
  8. 8.
    da Silva MJ, Vieira LMM, Oliveira AA, Ribeiro MC (2013) Monatsh Chem 144:321CrossRefGoogle Scholar
  9. 9.
    da Silva MJ, Ayala DAM (2016) Catal Sci Technol 6:3197CrossRefGoogle Scholar
  10. 10.
    da Silva MJ, Carari DM, da Silva AM (2015) RSC Adv 5:10529CrossRefGoogle Scholar
  11. 11.
    Noma Y, Asakawa Y (2010) In: Baser KHC, Buchbauer G (eds) Handbook of essential oils: science, technology, and applications. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Zhou P, Jiang W, Guo Y, Chen X, Xiao S (1989) Chin Sci Bull 34:125Google Scholar
  13. 13.
    Besson M, Gallezot P, Pinel C (2014) Chem Rev 114:1827CrossRefGoogle Scholar
  14. 14.
    Catrinescu C, Fernandes C, Castilho P, Breen C (2015) Appl Catal A 489:171CrossRefGoogle Scholar
  15. 15.
    Pito DS, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Chem Eng J 147:302CrossRefGoogle Scholar
  16. 16.
    Pito DS, Matos I, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) Appl Catal A 373:140CrossRefGoogle Scholar
  17. 17.
    Caiado M, Machado A, Santos RN, Matos I, Fonseca IM, Ramos AM, Vital J, Valente AA, Castanheiro JE (2013) Appl Catal A 451:36CrossRefGoogle Scholar
  18. 18.
    Matos I, Silva MF, Ruiz-Rosas R, Vital J, Rodriguez-Mirasol J, Cordero T, Castanheiro JE, Fonseca IM (2014) Micropor Mesopor Mat 199:66CrossRefGoogle Scholar
  19. 19.
    Yadav JS, Reddy BVS, Narasimhulu G, Purnima KV (2009) Tetrahedron Lett 50:5783CrossRefGoogle Scholar
  20. 20.
    Castanheiro JE, Guerreiro L, Fonseca IM, Ramos AM (2008) Stud Surf Sci Catal 174:1319CrossRefGoogle Scholar
  21. 21.
    Castanheiro JE, Ramos AM, Fonseca I, Vital J (2003) Catal Today 82:187CrossRefGoogle Scholar
  22. 22.
    Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Catal Today 289:14CrossRefGoogle Scholar
  23. 23.
    de Meireles ALP, Costa MS, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2014) ChemCatChem 6:2706CrossRefGoogle Scholar
  24. 24.
    Katritzky AR, Ignatchenko ES, Barcock RA, Lobanov VS (1994) Anal Chem 66:1799CrossRefGoogle Scholar
  25. 25.
    Timofeeva MN (2003) Appl Catal A 256:19–35CrossRefGoogle Scholar
  26. 26.
    Hensen K, Mahaim C, Hioderich WF (1997) Appl Catal A 149:311CrossRefGoogle Scholar
  27. 27.
    He X, Xu R, Zhang L, Zhang F, Zhou Z, Zhang Z (2016) Chem Engin Res Des 114:60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Henrique Priori Polo
    • 1
  • Neide Paloma Goncalves Lopes
    • 1
  • Márcio José da Silva
    • 1
    • 2
    Email author
  1. 1.Chemistry DepartmentFederal University of ViçosaViçosaBrazil
  2. 2.Departamento de Química, Universidade Federal de Viçosa (UFV)ViçosaBrazil

Personalised recommendations