Advertisement

Photophysical and Catalytic Properties of Silica Supported Early Transition Metal Oxides Relevant for Photocatalytic Applications

  • Moritz Lang
  • Marcus Klahn
  • Jennifer StrunkEmail author
Perspective
  • 20 Downloads

Abstract

In this paper the applicability of selected silica-supported early transition metal oxides in photocatalysis is discussed. The catalytic properties of highly dispersed transition metal oxides often differ strongly from their corresponding bulk material. The structural and photophysical properties can often be linked to those changes.

Graphical Abstract

Keywords

Transition metal oxides Photocatalysis Catalysis Silica-supported SiO2 

Notes

References

  1. 1.
    Xu Y, Schoonen MAA (2000) Am Miner 85:543–556CrossRefGoogle Scholar
  2. 2.
    Sato S (1986) Chem Phys Lett 123:126–128CrossRefGoogle Scholar
  3. 3.
    Anpo M (1997) Catal Surv Asia 1:169–179CrossRefGoogle Scholar
  4. 4.
    Wang J, Uma S, Klabunde KJ (2004) Appl Catal B 48:151–154CrossRefGoogle Scholar
  5. 5.
    Dong F, Sun Y, Fu M (2012) Int J Photoenergy 2012:1–10CrossRefGoogle Scholar
  6. 6.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  7. 7.
    Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91:3789–3798CrossRefGoogle Scholar
  8. 8.
    Anpo M, Shima T, Kodama S, Kubokawa Y (1987) J Phys Chem 91:4305–4310CrossRefGoogle Scholar
  9. 9.
    Wu P, Tatsumi T, Komatsu T, Yashima T (2002) Chem Mater 14:1657–1664CrossRefGoogle Scholar
  10. 10.
    Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhu Y, Li Y (2006) J Hazard Mater 137:952–958CrossRefPubMedGoogle Scholar
  11. 11.
    Marugán J, Van Grieken R, Alfano OM, Cassano AE (2006) AIChE J 52:2832–2843CrossRefGoogle Scholar
  12. 12.
    Lou Y, Tang Q, Wang H, Chia B, Wang Y, Yang Y (2008) Appl Catal A 350:118–125CrossRefGoogle Scholar
  13. 13.
    Gao X, Bare SR, Weckhuysen BM, Wachs IE (1998) J Phys Chem B 102:10842–10852CrossRefGoogle Scholar
  14. 14.
    Gao X, Bare SR, Fierro JLG, Banares MA, Wachs IE (1998) J Phys Chem B 102:5653–5666CrossRefGoogle Scholar
  15. 15.
    Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Catal Today 44:327–332CrossRefGoogle Scholar
  16. 16.
    Jarupatrakorn J, Tilley TD (2002) J Am Chem Soc 124:8380–8388CrossRefPubMedGoogle Scholar
  17. 17.
    Levitz P, Ehret G, Sinha SK, Drake JM (1991) J Chem Phys 95:6151–6161CrossRefGoogle Scholar
  18. 18.
    Wiltzius P, Bates FS, Dierker SB, Wignall GD (1987) Phys Rev A 36:2991–2994CrossRefGoogle Scholar
  19. 19.
    Du G, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL (2008) J Catal 253:74–90CrossRefGoogle Scholar
  20. 20.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefPubMedGoogle Scholar
  21. 21.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147–1160CrossRefGoogle Scholar
  22. 22.
    Beck JS, Vartuli J, Roth WJ, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson DH, Sheppard E, McCullen S (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  23. 23.
    Kawi S, Te M (1998) Catal Today 44:101–109CrossRefGoogle Scholar
  24. 24.
    Amiridis MD, Duevel RV, Wachs IE (1999) Appl Catal B 20:111–122CrossRefGoogle Scholar
  25. 25.
    Deo G, Wachs IE (1994) J Catal 146:335–345CrossRefGoogle Scholar
  26. 26.
    Strunk J, Bañares MA, Wachs IE (2017) Top Catal 60:1577–1617CrossRefGoogle Scholar
  27. 27.
    Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Sci World J 2014:21CrossRefGoogle Scholar
  28. 28.
    Lanziano C, Rodriguez F, Rabelo S, Guirardello R, Da Silva V, Rodell C (2014) Chem Eng Trans 37:589–594Google Scholar
  29. 29.
    Aghighi A, Haghighat F (2015) J Environ Chem Eng 3:1622–1629CrossRefGoogle Scholar
  30. 30.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefPubMedGoogle Scholar
  31. 31.
    Liu L, Zhao H, Andino JM, Li Y (2012) ACS Catal 2:1817–1828CrossRefGoogle Scholar
  32. 32.
    Augugliaro V, Coluccia S, Loddo V, Marchese L, Martra G, Palmisano L, Schiavello M (1999) Appl Catal B 20:15–27CrossRefGoogle Scholar
  33. 33.
    Landmann M, Rauls E, Schmidt WG (2012) J Phys: Condens Matter 24:195503Google Scholar
  34. 34.
    Anpo M, Takeuchi M (2003) J Catal 216:505–516CrossRefGoogle Scholar
  35. 35.
    Kang I-C, Zhang Q, Yin S, Sato T, Saito F (2008) Appl Catal B 80:81–87CrossRefGoogle Scholar
  36. 36.
    Mei B, Pougin A, Strunk J (2013) J Catal 306:184–189CrossRefGoogle Scholar
  37. 37.
    Ohno T, Tsubota T, Toyofuku M, Inaba R (2004) Catal Lett 98:255–258CrossRefGoogle Scholar
  38. 38.
    Luan Z, Maes EM, van der Heide PAW, Zhao D, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680–3686CrossRefGoogle Scholar
  39. 39.
    Nitsche D, Hess C (2016) J Phys Chem C 120:1025–1037CrossRefGoogle Scholar
  40. 40.
    Lassaletta G, Fernandez A, Espinos J, Gonzalez-Elipe A (1995) J Phys Chem 99:1484–1490CrossRefGoogle Scholar
  41. 41.
    Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89:5017–5021CrossRefGoogle Scholar
  42. 42.
    Anpo M (1989) Res Chem Intermed 11:67CrossRefGoogle Scholar
  43. 43.
    Yamashita H, Ichihashi Y, Harada M, Stewart G, Fox MA, Anpo M (1996) J Catal 158:97–101CrossRefGoogle Scholar
  44. 44.
    Colbeau-Justin C, Kunst M, Huguenin D (2003) J Mater Sci 38:2429–2437CrossRefGoogle Scholar
  45. 45.
    Halmann M (1978) Nature 275:115CrossRefGoogle Scholar
  46. 46.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637–638CrossRefGoogle Scholar
  47. 47.
    Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396:21–26CrossRefGoogle Scholar
  48. 48.
    Fu X, Clark LA, Yang Q, Anderson MA (1996) Environ Sci Technol 30:647–653CrossRefGoogle Scholar
  49. 49.
    Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205–216CrossRefGoogle Scholar
  50. 50.
    Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44:8269CrossRefGoogle Scholar
  51. 51.
    Anpo M, Chiba K (1992) J Mol Catal 74:207–212CrossRefGoogle Scholar
  52. 52.
    Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) J Phys Chem B 101:2632–2636CrossRefGoogle Scholar
  53. 53.
    Mori K, Yamashita H, Anpo M (2012) RSC Adv 2:3165–3172CrossRefGoogle Scholar
  54. 54.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408CrossRefGoogle Scholar
  55. 55.
    Amano F, Yamaguchi T, Tanaka T (2006) J Phys Chem B 110:281–288CrossRefPubMedGoogle Scholar
  56. 56.
    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Chem Rev 114:9987–10043CrossRefPubMedGoogle Scholar
  57. 57.
    Riedel E (2011) Anorganische chemie. Walter de GruyterGoogle Scholar
  58. 58.
    Tanabe K (1985) Mater Chem Phys 13:347–364CrossRefGoogle Scholar
  59. 59.
    Tanabe K, Yamaguchi T (1994) Catal Today 20:185–197CrossRefGoogle Scholar
  60. 60.
    Krishnan CK, Hayashi T, Ogura M (2008) Adv Mater 20:2131–2136CrossRefGoogle Scholar
  61. 61.
    Yoshida H, Chaskar MG, Kato Y, Hattori T (2003) J Photochem Photobiol A 160:47–53CrossRefGoogle Scholar
  62. 62.
    Wong MS, Huang HC, Ying JY (2002) Chem Mater 14:1961–1973CrossRefGoogle Scholar
  63. 63.
    Chen S-Y, Lee J-F, Cheng S (2010) J Catal 270:196–205CrossRefGoogle Scholar
  64. 64.
    Iglesias J, Melero JA, Bautista LF, Morales G, Sánchez-Vázquez R, Andreola MT, Lizarraga-Fernández A (2011) Catal Today 167:46–55CrossRefGoogle Scholar
  65. 65.
    Nakano Y, Iizuka T, Hattori H, Tanabe K (1979) J Catal 57:1–10CrossRefGoogle Scholar
  66. 66.
    Yücel O, Cinar F, Addemir O, Tekin A (1996) High Temp Mater Processes (London) 15:103Google Scholar
  67. 67.
    Scott W, Layfield E (1931) Ind Eng Chem 23:617–620CrossRefGoogle Scholar
  68. 68.
    Yoshiya K (1979) Bull Chem Soc Jpn 52:888–894CrossRefGoogle Scholar
  69. 69.
    Chen L, Yang B, Zhang X, Dong W, Cao K, Zhang X (2006) Energy Fuels 20:915–918CrossRefGoogle Scholar
  70. 70.
    Kortewille B, Wachs IE, Cibura N, Pfingsten O, Bacher G, Muhler M, Strunk J (2018) Eur J Inorg Chem 2018:3725–3735CrossRefGoogle Scholar
  71. 71.
    Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593–9600CrossRefPubMedGoogle Scholar
  72. 72.
    Blasco T, Nieto JML (1997) Appl Catal A 157:117–142CrossRefGoogle Scholar
  73. 73.
    Deo G, Wachs IE (1991) J Phys Chem 95:5889–5895CrossRefGoogle Scholar
  74. 74.
    Scharf U, Schraml-Marth M, Wokaun A, Baiker A (1991) J Chem Soc. Faraday Transactions 87:3299–3307CrossRefGoogle Scholar
  75. 75.
    Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90CrossRefGoogle Scholar
  76. 76.
    Schraml-Marth M, Wokaun A, Pohl M, Krauss H-L (1991) J Chem Soc. Faraday Transactions 87:2635–2646CrossRefGoogle Scholar
  77. 77.
    Deo G, Wachs IE (1991) Structure-activity and selectivity relationships in heterogeneous catalysis. In: R. K. Grasselli, A. W. Sleight (eds) Structure-activity and selectivity relationships in heterogeneous catalysis Proceedings of the ACS symposium on structure-activity relationships in heterogeneous catalysis. Elsevier, Amsterdam, pp. 13–20Google Scholar
  78. 78.
    Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ (1993) J Phys Chem 97:8240–8243CrossRefGoogle Scholar
  79. 79.
    Wachs IE (2003) Dalton Trans (Cambridge, England) 42:11762–11769CrossRefGoogle Scholar
  80. 80.
    Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) J Catal 197:160–171CrossRefGoogle Scholar
  81. 81.
    Gao X, Wachs IE (2000) J Phys Chem B 104:1261–1268CrossRefGoogle Scholar
  82. 82.
    Tran K, Hanning-Lee MA, Biswas A, Stiegman A, Scott GW (1995) J Am Chem Soc 117:2618–2626CrossRefGoogle Scholar
  83. 83.
    Tran K, Stiegman A, Scott GW (1996) Inorg Chim Acta 243:185–191CrossRefGoogle Scholar
  84. 84.
    Anpo M, Kubokawa Y (1987) Rev Chem Intermed 8:105–124CrossRefGoogle Scholar
  85. 85.
    Anpo M, Tanahashi I, Kubokawa Y (1980) J Phys Chem 84:3440–3443CrossRefGoogle Scholar
  86. 86.
    Yoshida S, Magatani Y, Noda S, Funabiki T (1981) Journal of the Chemical Society. Chemical Communications 1981:601–602CrossRefGoogle Scholar
  87. 87.
    Patterson HH, Cheng J, Despres S, Sunamoto M, Anpo M (1991) J Phys Chem 95:8813–8818CrossRefGoogle Scholar
  88. 88.
    Amano F, Tanaka T, Funabiki T (2004) Langmuir 20:4236–4240CrossRefPubMedGoogle Scholar
  89. 89.
    Deo G, Wachs IE (1994) J Catal 146:323–334CrossRefGoogle Scholar
  90. 90.
    Kortewille B, Wachs IE, Cibura N, Pfingsten O, Bacher G, Muhler M, Strunk J (2018) ChemCatChem 10:2360–2364CrossRefGoogle Scholar
  91. 91.
    El-Roz M, Lakiss L, Telegeiev I, Lebedev OI, Bazin P, Vicente A, Fernandez C, Valtchev V (2017) ACS Appl Mater Interfaces 9:17846–17855CrossRefPubMedGoogle Scholar
  92. 92.
    Ushikubo T (2000) Catal Today 57:331–338CrossRefGoogle Scholar
  93. 93.
    Tanabe K (1990) Catal Today 8:1–11CrossRefGoogle Scholar
  94. 94.
    Jehng JM, Wachs IE (1991) J Phys Chem 95:7373–7379CrossRefGoogle Scholar
  95. 95.
    Jehng J-M, Wachs IE (1991) J Mol Catal 67:369–387CrossRefGoogle Scholar
  96. 96.
    Jehng J-M, Wachs IE, Clark FT, Springman MC (1993) J Mol Catal 81:63–75CrossRefGoogle Scholar
  97. 97.
    Gao X, Wachs IE, Wong MS, Ying JY (2001) J Catal 203:18–24CrossRefGoogle Scholar
  98. 98.
    Tanaka T, Nojima H, Yoshida H, Nakagawa H, Funabiki T, Yoshida S (1993) Catal Today 16:297–307CrossRefGoogle Scholar
  99. 99.
    Yoshida H, Tanaka T, Yoshida T, Funabiki T, Yoshida S (1996) Catal Today 28:79–89CrossRefGoogle Scholar
  100. 100.
    Tanabe K, Iizuka T (1983) Catalytic Properties of Niobium Compounds. Niobium Technical Report 03/83. Compania Brasileira de Metalurgia e Mineracao, AraxaGoogle Scholar
  101. 101.
    Wachs IE, Jehng JM, Deo G, Hu H, Arora N (1996) Catal Today 28:199–205CrossRefGoogle Scholar
  102. 102.
    Wachs IE, Chen Y, Jehng J-M, Briand LE, Tanaka T (2003) Catal Today 78:13–24CrossRefGoogle Scholar
  103. 103.
    Datka J, Turek AM, Jehng JM, Wachs IE (1992) J Catal 135:186–199CrossRefGoogle Scholar
  104. 104.
    Tokio I, Kazuharu O, Kozo T (1983) Bull Chem Soc Jpn 56:2927–2931CrossRefGoogle Scholar
  105. 105.
    Yoshida S, Nishimura Y, Tanaka T, Kanai H, Funabiki T (1990) Catal Today 8:67–75CrossRefGoogle Scholar
  106. 106.
    Hogan J (1970) J Polym Sci A 8:2637–2652CrossRefGoogle Scholar
  107. 107.
    Greiner MT, Lu Z-H (2013) Npg Asia Mater 5:e55CrossRefGoogle Scholar
  108. 108.
    Yuzheng G, Stewart JC, John R (2012) J Phys: Condens Matter 24:325504Google Scholar
  109. 109.
    Chun-Shen C, H G, H S (1996) Physica Status Solidi (a) 155:417–425CrossRefGoogle Scholar
  110. 110.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327–3350CrossRefPubMedGoogle Scholar
  111. 111.
    Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425CrossRefGoogle Scholar
  112. 112.
    Hardcastle FD, Wachs IE (1988) J Mol Catal 46:173–186CrossRefGoogle Scholar
  113. 113.
    Kim DS, Tatibouet J-M, Wachs IE (1992) J Catal 136:209–221CrossRefGoogle Scholar
  114. 114.
    Chakrabarti A, Gierada M, Handzlik J, Wachs IE (2016) Top Catal 59:725–739CrossRefGoogle Scholar
  115. 115.
    Murata C, Yoshida H, Hattori T (2001) Chem Commun 2001:2412–2413CrossRefGoogle Scholar
  116. 116.
    Hazenkamp M, Blasse G (1992) J Phys Chem 96:3442–3446CrossRefGoogle Scholar
  117. 117.
    Anpo M, Tanahashi I, Kubokawa Y (1982) J Phys Chem 86:1–3CrossRefGoogle Scholar
  118. 118.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:223–232CrossRefGoogle Scholar
  119. 119.
    McDaniel MP (1982) J Catal 76:17–28CrossRefGoogle Scholar
  120. 120.
    Matsuoka M, Anpo M (2003) J Photochem Photobiol C 3:225–252CrossRefGoogle Scholar
  121. 121.
    Balandin AA, Rozhdestvenskaya ID (1959) Bull Acad Sci USSR Div Chem Sci 8:1804–1810CrossRefGoogle Scholar
  122. 122.
    Katrib A, Leflaive P, Hilaire L, Maire G (1996) Catal Lett 38:95–99CrossRefGoogle Scholar
  123. 123.
    Cuba-Torres CM, Marin-Flores O, Owen CD, Wang Z, Garcia-Perez M, Norton MG, Ha S (2015) Fuel 146:132–137CrossRefGoogle Scholar
  124. 124.
    Setnička M, Tišler Z, Kubička D, Bulánek R (2015) Top Catal 58:866–876CrossRefGoogle Scholar
  125. 125.
    Ono T, Anpo M, Kubokawa Y (1986) J Phys Chem 90:4780–4784CrossRefGoogle Scholar
  126. 126.
    Lou Y, Wang H, Zhang Q, Wang Y (2007) J Catal 247:245–255CrossRefGoogle Scholar
  127. 127.
    Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Appl Catal A 399:28–34CrossRefGoogle Scholar
  128. 128.
    Louis C, Che M, Anpo M (1993) J Catal 141:453–464CrossRefGoogle Scholar
  129. 129.
    Anpo M, Suzuki T, Kubokawa Y, Tanaka F, Yamashita S (1984) J Phys Chem 88:5778–5779CrossRefGoogle Scholar
  130. 130.
    Anpo M, Kondo M, Louis C, Che M, Coluccia S (1989) J Am Chem Soc 111:8791–8799CrossRefGoogle Scholar
  131. 131.
    Thielemann JP, Kröhnert J, Hess C (2010) J Phys Chem C 114:17092–17098CrossRefGoogle Scholar
  132. 132.
    Golandaj AJ, Mahomed AS, Singh S, Friedrich HB (2015) J Porous Mater 22:787–796CrossRefGoogle Scholar
  133. 133.
    Shetty M, Murugappan K, Prasomsri T, Green WH, Román-Leshkov Y (2015) J Catal 331:86–97CrossRefGoogle Scholar
  134. 134.
    Anpo M, Tanahashi I, Kubokawa Y (1982) J Chem Soc. Faraday Transactions 178:2121–2128CrossRefGoogle Scholar
  135. 135.
    Anpo M, Kubokawa Y (1982) J Catal 75:204–206CrossRefGoogle Scholar
  136. 136.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040CrossRefGoogle Scholar
  137. 137.
    Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Biochemistry 44:1894–1908CrossRefPubMedGoogle Scholar
  138. 138.
    Nugent JHA, Rich AM, Evans MCW (2001) Biochim Biophys Acta (BBA) 1503:138–146CrossRefGoogle Scholar
  139. 139.
    Kok B, Forbush B, McGloin M (1970) Photochem Photobiol 11:457–475CrossRefPubMedGoogle Scholar
  140. 140.
    Zhong W, Kirk SR, Yin D, Li Y, Zou R, Mao L, Zou G (2015) Chem Eng J 280:737–747CrossRefGoogle Scholar
  141. 141.
    Reed C, Lee Y-K, Oyama ST (2006) J Phys Chem B 110:4207–4216CrossRefPubMedGoogle Scholar
  142. 142.
    Parida KM, Dash SS (2009) J Mol Catal A 306:54–61CrossRefGoogle Scholar
  143. 143.
    Tang Q, Hu S, Chen Y, Guo Z, Hu Y, Chen Y, Yang Y (2010) Microporous Mesoporous Mater 132:501–509CrossRefGoogle Scholar
  144. 144.
    Andreozzi R, Insola A, Caprio V, Marotta R, Tufano V (1996) Appl Catal A 138:75–81CrossRefGoogle Scholar
  145. 145.
    Han Y-F, Chen F, Zhong Z-Y, Ramesh K, Widjaja E, Chen L-W (2006) Catal Commun 7:739–744CrossRefGoogle Scholar
  146. 146.
    Ahmed KAM, Peng H, Wu K, Huang K (2011) Chem Eng J 172:531–539CrossRefGoogle Scholar
  147. 147.
    Duan L, Sun B, Wei M, Luo S, Pan F, Xu A, Li X (2015) J Hazard Mater 285:356–365CrossRefPubMedGoogle Scholar
  148. 148.
    Cao H, Suib SL (1994) J Am Chem Soc 116:5334–5342CrossRefGoogle Scholar
  149. 149.
    Chen J, Lin JC, Purohit V, Cutlip MB, Suib SL (1997) Catal Today 33:205–214CrossRefGoogle Scholar
  150. 150.
    Iyer A, Galindo H, Sithambaram S (2010) King’ondu C, Chen C-H, Suib SL. Appl Catal A 375:295–302CrossRefGoogle Scholar
  151. 151.
    Othman I, Mohamed RM, Ibrahem FM (2007) J Photochem Photobiol, A 189:80–85CrossRefGoogle Scholar
  152. 152.
    Mohamed MM, Othman I, Mohamed RM (2007) J Photochem Photobiol A 191:153–161CrossRefGoogle Scholar
  153. 153.
    Villaseñor J, Reyes P, Pecchi G (2002) Catal Today 76:121–131CrossRefGoogle Scholar
  154. 154.
    Kim W, Edri E, Frei H (2016) Acc Chem Res 49:1634–1645CrossRefPubMedGoogle Scholar
  155. 155.
    Baldoví HG, Neaţu Ş, Khan A, Asiri AM, Kosa SA, Garcia H (2015) J Phys Chem C 119:6819–6827CrossRefGoogle Scholar
  156. 156.
    Lüken A, Muhler M, Strunk J (2015) Phys Chem Chem Phys 17:10391–10397CrossRefPubMedGoogle Scholar
  157. 157.
    Balcerski W, Ryu SY, Hoffmann MR (2007) J Phys Chem C 111:15357–15362CrossRefGoogle Scholar
  158. 158.
    Batzill M (2011) Energy Environ Sci 4:3275–3286CrossRefGoogle Scholar
  159. 159.
    Shen TFR, Lai M-H, Yang TCK, Fu IP, Liang N-Y, Chen W-T (2012) J Taiwan Inst Chem Eng 43:95–101CrossRefGoogle Scholar
  160. 160.
    Gong H, Cao Y, Zhang Y, Zhang Y, Liu K, Cao H, Yan H (2017) RSC Adv 7:19019–19025CrossRefGoogle Scholar
  161. 161.
    Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2017) Nano-Micro Lett 10:23CrossRefGoogle Scholar
  162. 162.
    Ross-Medgaarden EI, Wachs IE, Knowles WV, Burrows A, Kiely CJ, Wong MS (2009) J Am Chem Soc 131:680–687CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Department Heterogeneous PhotocatalysisLeibniz Institute for Catalysis eV at the University of RostockRostockGermany

Personalised recommendations