CO2 and H2O Electrolysis Using Solid Oxide Electrolyzer Cell (SOEC) with La and Cl- doped Strontium Titanate Cathode

  • Doruk Dogu
  • Seval Gunduz
  • Katja E. Meyer
  • Dhruba J. Deka
  • Anne C. Co
  • Umit S. OzkanEmail author


The average CO2 concentration in atmosphere increased by 25 ppm in the last decade, and during the same period, the average global surface level temperature rose by 0.3 °C. CO2, one of the biggest contributors to climate change, is a greenhouse gas that traps the energy emitted by the earth’s surface, causing an increase in the temperature. Because of the greenhouse effect of CO2, a growing area of research is trying to find ways to minimize CO2 emission and decrease the CO2 concentration in the atmosphere. Besides reducing the CO2 emission, it is also important to develop technologies to convert CO2 into valuable products. One such product is syngas, a mixture of carbon monoxide and hydrogen that can be used as fuel, as well as for synthesis of hydrocarbons through Fischer–Tropsch synthesis. Intermediate and high temperature co-electrolysis of CO2 and water using Solid Oxide Electrolyzer Cell (SOEC) is a promising method to produce syngas from CO2. This work focuses on the use of La0.2Sr0.8TiO3±δClσ as an SOEC cathode for CO2 and H2O co-electrolysis, and its activity compared with conventional SOFC electrode material, Ni/NiO-YSZ. Electrocatalytically, it was found that Ni/NiO-YSZ outperforms La0.2Sr0.8TiO3±δClσ when only CO2 is reduced, however, La0.2Sr0.8TiO3±δClσ shows higher activity for co-electrolysis of CO2 and H2O. Post-reaction temperature-programmed oxidation testing performed on the co-electroylsis cells demonstrated less coking associated with La0.2Sr0.8TiO3±δClσ than Ni/NiO-YSZ, although both materials showed relatively lower levels of coking when H2O was not present. Interactions between the surfaces of these materials and CO2 were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Raman spectroscopy. These showed that CO2 interacts more strongly with La0.2Sr0.8TiO3±δClσ than Ni/NiO-YSZ, forming carbonate species on the surface. The electrical conductivity of the materials was also compared, and while Ni/NiO-YSZ showed slightly higher values, the electrical conductivity of La0.2Sr0.8TiO3±δClσ increased more rapidly with temperature and was in the same order of magnitude as that of Ni/NiO-YSZ.

Graphical abstract


Electrolysis Electrocatalysis Solid oxide electrolyzer cell (SOEC) Strontium titanate Perovskite 



Financial support provided for this work by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-07ER15896 is gratefully acknowledged.


  1. 1.
    Trends in Atmospheric Carbon Dioxide, U.S. Department of Commerce- National Oceanic and Atmospheric Administration.
  2. 2.
  3. 3.
  4. 4.
    Leckel D (2009) Energy Fuels 23:2342–2358CrossRefGoogle Scholar
  5. 5.
    Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Renew Sustain Energy Rev 15:1–23CrossRefGoogle Scholar
  6. 6.
    Graves C, Ebbesen SD, Mogensen M (2011) Solid State Ionics 192:398–403CrossRefGoogle Scholar
  7. 7.
    Wang Y, Liu T, Lei L, Chen F (2017) Fuel Process Technol 161:248–258CrossRefGoogle Scholar
  8. 8.
    Hino R, Haga K, Aita H, Sekita K (2004) Nucl Eng Des 233:363–375CrossRefGoogle Scholar
  9. 9.
    Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Electrochem Solid-State Lett 11:B167CrossRefGoogle Scholar
  10. 10.
    Gaudillere C, Navarrete L, Serra JM (2014) Int J Hydrogen Energy 39:3047–3054CrossRefGoogle Scholar
  11. 11.
    Knibbe R, Traulsen ML, Hauch A, Ebbesen SD, Mogensen M (2010) J Electrochem Soc 157:B1209CrossRefGoogle Scholar
  12. 12.
    Zhang Y-Q, Li J-H, Sun Y-F, Hua B, Luo J-L (2016) ACS Appl Mater Interfaces 8:6457–6463CrossRefGoogle Scholar
  13. 13.
    Uchida H, Osada N, Watanabe M (2004) Electrochem Solid-State Lett 7:A500CrossRefGoogle Scholar
  14. 14.
    Nguyen VN, Fang Q, Packbier U, Blum L (2013) Int J Hydrogen Energy 38:4281–4290CrossRefGoogle Scholar
  15. 15.
    Murray EP, Tsai T, Barnett SA (1999) Nature. 400:649CrossRefGoogle Scholar
  16. 16.
    Xie K, Zhang Y, Meng G, Irvine JTS (2011) Energy Environ Sci 4:2218–2222CrossRefGoogle Scholar
  17. 17.
    Xu S, Li S, Yao W, Dong D, Xie K (2013) J Power Sources 230:115–121CrossRefGoogle Scholar
  18. 18.
    Li S, Li Y, Gan Y, Xie K, Meng G (2012) J Power Sources 218:244–249CrossRefGoogle Scholar
  19. 19.
    Chen S, Xie K, Dong D, Li H, Qin Q, Zhang Y, Wu Y (2015) J Power Sources 274:718–729CrossRefGoogle Scholar
  20. 20.
    Gan Y, Zhang J, Li Y, Li S, Xie K, Irvine JTS (2012) J Electrochem Soc 159:F763–F767CrossRefGoogle Scholar
  21. 21.
    Ge X, Zhang L, Fang Y, Zeng J, Chan SH (2011) RSC Adv 1:715CrossRefGoogle Scholar
  22. 22.
    Hosoi K, Hagiwara H, Ida S, Ishihara T (2016) J Phys Chem C 120:16110–16117CrossRefGoogle Scholar
  23. 23.
    Liu Q, Dong X, Xiao G, Zhao F, Chen F (2010) Adv Mater 22:5478–5482CrossRefGoogle Scholar
  24. 24.
    Tsekouras G, Irvine JTS (2011) J Mater Chem 21:9367CrossRefGoogle Scholar
  25. 25.
    Yang X, Irvine JTS (2008) J Mater Chem 18:2349CrossRefGoogle Scholar
  26. 26.
    Yoon S-E, Song S-H, Choi J, Ahn J-Y, Kim B-K, Park J-S (2014) Int J Hydrogen Energy 39:5497–5504CrossRefGoogle Scholar
  27. 27.
    Yue X, Irvine JTS (2012) Solid State Ionics 225:131–135CrossRefGoogle Scholar
  28. 28.
    Yue X, Irvine JTS (2012) Electrochem Solid-State Lett 15:B31CrossRefGoogle Scholar
  29. 29.
    Yue X, Irvine JTS (2012) J Electrochem Soc 159:F442–F448CrossRefGoogle Scholar
  30. 30.
    Torrell M, Garcia-Rodriguez S, Morata A, Penelas G, Tarancon A (2015) Faraday Discuss 182:241–255CrossRefGoogle Scholar
  31. 31.
    Yao W, Duan T, Li Y, Yang L, Xie K (2015) N J Chem 39:2956–2965CrossRefGoogle Scholar
  32. 32.
    Wang S, Ishihara T (2013) ECS Trans 57:3171–3176CrossRefGoogle Scholar
  33. 33.
    Yang L, Xue X, Xie K (2015) Phys Chem Cheml Phys 17:11705–11714CrossRefGoogle Scholar
  34. 34.
    Zhang X, Song Y, Wang G, Bao X (2017) J Energy Chem 26:839–853CrossRefGoogle Scholar
  35. 35.
    Dogu D, Meyer KE, Fuller A, Gunduz S, Deka DJ, Kramer N, Co AC, Ozkan US (2018) Appl Catal B 227:90–101CrossRefGoogle Scholar
  36. 36.
    Gong M, Liu X, Trembly J, Johnson C (2007) J Power Sources 168:289–298CrossRefGoogle Scholar
  37. 37.
    He H, Vohs JM, Gorte RJ (2005) J Power Sources 144:135–140CrossRefGoogle Scholar
  38. 38.
    Jacobson AJ (2010) Chem Mater 22:660–674CrossRefGoogle Scholar
  39. 39.
    Mukundan R, Brosha EL, Garzon FH (2004) Electrochem Solid-State Lett 7:A5–A7CrossRefGoogle Scholar
  40. 40.
    Zhou X, Yan N, Chuang KT, Luo J (2014) RSC Adv 4:118–131CrossRefGoogle Scholar
  41. 41.
    Laguna-Bercero MA, Kilner JA, Skinner SJ (2010) Chem Mater 22:1134–1141CrossRefGoogle Scholar
  42. 42.
    Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K (2015) J Power Sources 293:642–648CrossRefGoogle Scholar
  43. 43.
    Cornu D, Guesmi H, Krafft J-M, Lauron-Pernot H (2012) J Phys Chem C 116:6645–6654CrossRefGoogle Scholar
  44. 44.
    Philipp R, Fujimoto K (1992) J Phys Chem 96:9035–9038CrossRefGoogle Scholar
  45. 45.
    Chang ACC, Chuang SSC, Gray M, Soong Y (2003) Energy Fuels 17:468–473CrossRefGoogle Scholar
  46. 46.
    Lercher JA, Colombier C, Noller H (1984) J Chem Soc Faraday Trans 1(80):949–959CrossRefGoogle Scholar
  47. 47.
    Abreu YG, Soares JC, Moreira RL, Dias A (2016) J Phys Chem C 120:16960–16968CrossRefGoogle Scholar
  48. 48.
    Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) Carbon 53:38–49CrossRefGoogle Scholar
  49. 49.
    Pomfret MB, Owrutsky JC, Walker RA (2006) J Phys Chem B 110:17305–17308CrossRefGoogle Scholar
  50. 50.
    Sumi H, Lee Y-H, Muroyama H, Matsui T, Eguchi K (2010) J Electrochem Soc 157:B1118CrossRefGoogle Scholar
  51. 51.
    Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73CrossRefGoogle Scholar
  52. 52.
    Mamtani K, Jain D, Zemlyanov D, Celik G, Luthman J, Renkes G, Co AC, Ozkan US (2016) ACS Catal 6:7249–7259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Doruk Dogu
    • 1
  • Seval Gunduz
    • 1
  • Katja E. Meyer
    • 1
  • Dhruba J. Deka
    • 1
  • Anne C. Co
    • 2
  • Umit S. Ozkan
    • 1
    Email author
  1. 1.William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations