Efficient Degradation of Gas-Phase Toluene by Ozone-Assisted Photocatalytic Oxidation on TiO2/Graphene Composites

  • Haoling Ye
  • Zhi Wang
  • Yiqiu Liu
  • Si Chen
  • Haiqiang WangEmail author
  • Zhongbiao Wu


Ozone-assisted photocatalytic oxidation was employed for the degradation of gas-phase toluene in this study. TiO2/graphene (GR) composites with different addition ratios (0.1, 0.5, 1 and 2 wt%) of graphene were synthesized. XRD, SEM (with EDS), TEM, BET, UV–vis DRS, PL and photochemical measurements were conducted to investigate the physical, optical and photochemical properties. The results indicated that TiO2 nanoparticles were smoothly loaded on the graphene nanosheets, and the as-synthesized TiO2/GR composites possessed excellent properties such as extended light absorption range, efficient charge separation and transfer ability, and broadened lifetimes of photo-generated carriers. The effect of water vapor in the ozone-assisted photocatalytic oxidation reactions was also studied, which was found to be essential for the degradation of toluene. When the relative humidity was 80%, TiO2/GR (0.1 wt%) exhibited the highest toluene removal efficiency of 97.2% among all the samples, and other TiO2/GR composites also exhibited better toluene degradation performance than bare TiO2. Furthermore, the introduction of ozone was helpful for the improvement of photocatalytic performance. The promotion mechanism was proposed that the addition of an appropriate amount of graphene in TiO2 was helpful for the separation and transfer of photo-excited carriers, thereby reducing the recombination of e/h+ pairs and promoting the formation of oxidizing species such as oxygen negative radicals (O3·, O·) and hydroxyl radicals (OH·). Overall, this work could provide a new insight into the fabrication of TiO2/GR composites as high performance photocatalysts in the environmental protection issues.

Graphical Abstract


Photocatalytic oxidation Toluene Ozone TiO2/graphene composites 



This work was financially supported by National Key Research and Development Program of China (2016YFC0204700), National Natural Science Foundation of China (NSFC-51578488), Zhejiang Provincial “151” Talents Program, Key Project of Zhejiang Provincial Science, Technology Program, the Program for Zhejiang Leading Team of S&T Innovation (Grant No. 2013TD07), Special Program for Social Development of Key Science and Changjiang Scholar Incentive Program (Ministry of Education, China, 2009).


  1. 1.
    Roso M, Boaretti C, Pelizzo MG, Lauria A, Modesti M, Lorenzetti A (2017) Ind Eng Chem Res 56:9980CrossRefGoogle Scholar
  2. 2.
    Shu Y, Ji J, Xu Y, Deng J, Huang H, He M, Leung DYC, Wu M, Liu S, Liu S, Liu G, Xie R, Feng Q, Zhan Y, Fang R, Ye X (2018) Appl Catal B 220:78CrossRefGoogle Scholar
  3. 3.
    Ji J, Xu Y, Huang H, He M, Liu S, Liu G, Xie R, Feng Q, Shu Y, Zhan Y, Fang R, Ye X, Leung DYC (2017) Chem Eng J 327:490CrossRefGoogle Scholar
  4. 4.
    Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW (2014) Chem Rev 114:9919CrossRefGoogle Scholar
  5. 5.
    Shayegan Z, Lee CS, Haghighat F (2018) Chem Eng J 334:2408CrossRefGoogle Scholar
  6. 6.
    Weon S, Kim J, Choi W (2018) Appl Catal B 220:1CrossRefGoogle Scholar
  7. 7.
    Hu Y, Xie X, Wang X, Wang Y, Zeng Y, Pui DYH, Sun J (2018) Appl Surf Sci 440:266CrossRefGoogle Scholar
  8. 8.
    Zeng Q, Xie X, Wang X, Wang Y, Lu G, Pui DYH, Sun J (2018) Chem Eng J 341:83CrossRefGoogle Scholar
  9. 9.
    Lyulyukin MN, Kolinko PA, Selishchev DS, Kozlov DV (2018) Appl Catal B 220:386CrossRefGoogle Scholar
  10. 10.
    Mamaghani AH, Haghighat F, Lee CS (2017) Appl Catal B 203:247CrossRefGoogle Scholar
  11. 11.
    Huang H, Liu G, Zhan Y, Xu Y, Lu H, Huang H, Feng Q, Wu M (2017) Catal Today 281:649CrossRefGoogle Scholar
  12. 12.
    Huang H, Li W (2011) Appl Catal B 102:449CrossRefGoogle Scholar
  13. 13.
    Huang X, Yuan J, Shi J, Shangguan W (2009) J Hazard Mater 171:827CrossRefGoogle Scholar
  14. 14.
    Yu K-P, Lee GWM (2007) Appl Catal B 75:29CrossRefGoogle Scholar
  15. 15.
    Oyama ST (2000) Catal Rev-Sci Eng 42:279CrossRefGoogle Scholar
  16. 16.
    Maciuca A, Batiot-Dupeyrat C, Tatibouët J-M (2012) Appl Catal B 125:432CrossRefGoogle Scholar
  17. 17.
    Huang H, Huang H, Zhan Y, Liu G, Wang X, Lu H, Xiao L, Feng Q, Leung DYC (2016) Appl Catal B 186:62CrossRefGoogle Scholar
  18. 18.
    Abou Saoud W, Assadi AA, Guiza M, Bouzaza A, Aboussaoud W, Ouederni A, Soutrel I, Wolbert D, Rtimi S (2017) Appl Catal B 213:53CrossRefGoogle Scholar
  19. 19.
    Tu W, Zhou Y, Zou Z (2013) Adv Funct Mater 23:4996CrossRefGoogle Scholar
  20. 20.
    Wu JH, Yang ZW, Qiu CY, Zhang YJ, Wu ZQ, Yang JL, Lu YH, Li JF, Yang DX, Hao R, Li EP, Yu GL, Lin SS (2018) Nanoscale 10:8023CrossRefGoogle Scholar
  21. 21.
    Kamat PV (2011) J Phys Chem Lett 2:242CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Tang Z-R, Fu X, Xu Y-J (2011) ACS Nano 5:7426CrossRefGoogle Scholar
  23. 23.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380CrossRefGoogle Scholar
  24. 24.
    Qiu B, Xing M, Zhang J (2014) J Am Chem Soc 136:5852CrossRefGoogle Scholar
  25. 25.
    Han W, Zang C, Huang Z, Zhang H, Ren L, Qi X, Zhong J (2014) Int J Hydrogen Energy 39:19502CrossRefGoogle Scholar
  26. 26.
    Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y, Xiao W, Xie C (2013) ACS Catalysis 3:1477CrossRefGoogle Scholar
  27. 27.
    Wang T, Chen S, Wang HG, Liu Z, Wu ZB (2017) Chin J Catal 38:793CrossRefGoogle Scholar
  28. 28.
    Mo JH, Zhang YP, Xu QJ, Zhu YF, Lamson JJ, Zhao RY (2009) Appl Catal B 89:570CrossRefGoogle Scholar
  29. 29.
    Kim J, Zhang P, Li J, Wang J, Fu P (2014) Chem Eng J 252:337CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) ACS Nano 4:7303CrossRefGoogle Scholar
  31. 31.
    Li Q, Sun Z, Wang H, Wu Z (2018) J CO2 Util 28:126CrossRefGoogle Scholar
  32. 32.
    Khramov E, Kotolevich Y, García Ramos JC, Pestryakov A, Zubavichus Y, Bogdanchikova N (2018) Fuel 234:312CrossRefGoogle Scholar
  33. 33.
    Xie T, Liu Y, Wang H, Wu Z (2018) Appl Surf Sci 444:320CrossRefGoogle Scholar
  34. 34.
    Li B, Lai C, Zeng G, Qin L, Yi H, Huang D, Zhou C, Liu X, Cheng M, Xu P, Zhang C, Huang F, Liu S (2018) ACS Appl Mater Interfaces 10:18824CrossRefGoogle Scholar
  35. 35.
    Tang Q, Sun Z, Wang P, Li Q, Wang H, Wu Z (2019) Appl Surf Sci 463:456CrossRefGoogle Scholar
  36. 36.
    Wang YN, Zeng YQ, Chen XY, Wang QY, Guo LN, Zhang SL, Zhong Q (2018) Green Chem 20:3014CrossRefGoogle Scholar
  37. 37.
    Wu JH, Feng SR, Wu ZQ, Lu YH, Lin SS (2017) RSC Adv 7:33413CrossRefGoogle Scholar
  38. 38.
    Ochiai T, Fujishima A (2012) J Photochem Photobiol C-Photochem Rev 13:247CrossRefGoogle Scholar
  39. 39.
    Wu J, Lu Y, Feng S, Wu Z, Lin S, Hao Z, Yao T, Li X, Zhu H, Lin S Advanced Functional Materials 0: 1804712Google Scholar
  40. 40.
    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer FPG, Gatti F, Koppens FHL (2012) Nat Nanotechnol 7:363CrossRefGoogle Scholar
  41. 41.
    Zhu M, Zhang L, Li XM, He YJ, Li X, Guo FM, Zang XB, Wang KL, Xie D, Li XH, Wei BQ, Zhu HW (2015) J Mater Chem A 3:8133CrossRefGoogle Scholar
  42. 42.
    Ochiai T, Nanba H, Nakagawa T, Masuko K, Nakata K, Murakami T, Nakano R, Hara M, Koide Y, Suzuki T, Ikekita M, Morito Y, Fujishima A (2012) Catal Sci Technol 2:76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Haoling Ye
    • 1
    • 2
  • Zhi Wang
    • 1
    • 2
  • Yiqiu Liu
    • 1
    • 2
  • Si Chen
    • 1
    • 2
  • Haiqiang Wang
    • 1
    • 2
    Email author
  • Zhongbiao Wu
    • 1
    • 2
  1. 1.Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution ControlHangzhouPeople’s Republic of China

Personalised recommendations