Advertisement

Heterogeneous Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Rh Nanoparticles Immobilized in Ionic Liquid

  • He-yan JiangEmail author
  • Hong-mei Cheng
  • Feng-xia Bian
Article
  • 18 Downloads

Abstract

Rhodium nanoparticles (Rh NPs) stabilized by natural cinchona alkaloids were synthesized in imidazolium-based ionic liquids using H2 as the reductant. Characterization showed well-dispersed Rh NPs of about 1.96 nm (TEM and HRTEM) and confirmed the ionic liquid and cinchona alkaloid stabilization to the Rh(0) NPs (XPS). When modified by chiral diamine, including (1R,2R)-diphenylethylenediamine ((1R,2R)-DPEN) or cinchona alkaloid derivatives, the Rh NPs catalysts exhibited good activity, chemoselectivity and enantioselectivity in the heterogeneous enantioselective hydrogenation of aromatic ketones. Synergistic effect between (1R,2R)-DPEN and cinchonidine was also observed, which significantly accelerated the reaction rate and enhanced the enantioselectivity. 63.0% enantioselectivity and 98.9% chemoselectivity could be achieved in the acetophenone enantioselective hydrogenation; up to 70.2% enantioselectivity and 100% chemoselectivity was obtained in the isobutyrylbenzene catalytic enantioselective hydrogenation. Catalytic system could be reused several times without significant loss in activity, chemoselectivity as well as enantioselectivity. This catalytic protocol opens the door to heterogeneous enantioselective hydrogenation of aromatic ketones with metal Rh NPs immobilized in ionic liquid.

Graphical Abstract

Cinchona alkaloid and ionic liquid stabilized Rh NPs catalyst, when modified by chiral diamine like (1R,2R)-DPEN, exhibited high activity, high chemoselectivity and good enantioselectivity in the challenging heterogeneous enantioselective hydrogenation of aromatic ketones to corresponding aromatic alcohols under mild conditions. Synergistic effect between (1R,2R)-DPEN and cinchonidine was also observed, which significantly accelerated the reaction rate and enhanced the enantioselectivity. 63.0% enantioselectivity and 98.9% chemoselectivity could be achieved in the acetophenone enantioselective hydrogenation; up to 70.2% enantioselectivity and 100% chemoselectivity was obtained in the isobutyrylbenzene catalytic enantioselective hydrogenation. Catalytic system could be reused several times without significant loss in activity, chemoselectivity as well as enantioselectivity. This catalytic protocol opens the door to heterogeneous enantioselective hydrogenation of aromatic ketones with metal Rh NPs immobilized in ionic liquid.

Keywords

Aromatic ketone Cinchona alkaloid Heterogeneous enantioselective hydrogenation Ionic liquid Nanoparticle 

Notes

Acknowledgements

This work was financially supported by Natural Science Foundation Project of CQ (No. cstc2018jcyjAX0735), National Natural Science Foundation of China (No. 21201184), Chongqing Technology and Business University (1751039) and Chongqing Key Laboratory of Catalysis and New Environmental Materials (1456028, KFJJ2018050).

References

  1. 1.
    Amiens C, Ciuculescu-Pradines D, Philippot K (2016) Coord Chem Rev 308:409CrossRefGoogle Scholar
  2. 2.
    Chacón G, Dupont J (2018) ChemCatChem 10:1CrossRefGoogle Scholar
  3. 3.
    Luska KL, Migowski P, Leitner W (2015) Green Chem 17:3195CrossRefGoogle Scholar
  4. 4.
    Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780CrossRefGoogle Scholar
  5. 5.
    Nejad MS, Sheibani H (2018) Catal Lett 148:125CrossRefGoogle Scholar
  6. 6.
    Jiang HY, Xu J, Sun B (2018) Appl Organometal Chem 32:4260CrossRefGoogle Scholar
  7. 7.
    Fonseca GS, Scholten JD, Dupont J (2004) Synlett 9:1525Google Scholar
  8. 8.
    Julis J, Hölscher M, Leitner W (2010) Green Chem 12:1634CrossRefGoogle Scholar
  9. 9.
    Jiang H, Zheng X (2015) Catal Sci Technol 5:3728CrossRefGoogle Scholar
  10. 10.
    Jiang H, Zheng X (2015) App Catal A 499:118CrossRefGoogle Scholar
  11. 11.
    Tomohiro Y, Hiroyuki M, Shu K (2014) Chem Soc Rev 43:1450CrossRefGoogle Scholar
  12. 12.
    Zhu M (2016) Catal Lett 146:575CrossRefGoogle Scholar
  13. 13.
    Shende VS, Singh P, Bhanage BM (2018) Catal Sci Technol 8:955CrossRefGoogle Scholar
  14. 14.
    Wang Z, Huang L, Geng L, Chen R, Xing W, Wang Y, Huang J (2015) Catal Lett 145:1008CrossRefGoogle Scholar
  15. 15.
    Meemken F, Baiker A (2017) Chem Rev 117:11522CrossRefGoogle Scholar
  16. 16.
    Stefane B, Pozgan F (2014) Catal Rev Sci Eng 56:82CrossRefGoogle Scholar
  17. 17.
    Marzialetti T, Oportus M, Ruiz D, Fierro JLG, Reyes P (2008) Catal Today 133–135:711CrossRefGoogle Scholar
  18. 18.
    Tang B, Xiong W, Liu DR, Jia Y, Wang JB, Chen H, Li XJ (2008) Tetrahedron Asymmetry 19:1397CrossRefGoogle Scholar
  19. 19.
    Jiang HY, Yang CF, Li C, Fu HY, Chen H, Li RX, Li XJ (2008) Angew Chem Int Ed 47:9240CrossRefGoogle Scholar
  20. 20.
    Jiang HY, Sun B, Zheng XX, Chen H (2012) Appl Catal A 421–422:86CrossRefGoogle Scholar
  21. 21.
    Jiang HY, Chen H, Li RX (2010) Catal Commun 11:584CrossRefGoogle Scholar
  22. 22.
    Yang CF, Jiang HY, Feng J, Fu HY, Li RX, Chen H, Li XJ (2009) J Mol Catal A 300:98CrossRefGoogle Scholar
  23. 23.
    Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) Chem Eur J 9:3263CrossRefGoogle Scholar
  24. 24.
    Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184CrossRefGoogle Scholar
  25. 25.
    Liu X, Zhang T, Hu Y, Shen L (2014) Catal Lett 144:1289CrossRefGoogle Scholar
  26. 26.
    Li C, Zhang L, Liu H, Zheng X, Fu H, Chen H, Li R (2014) Catal Commun 54:27CrossRefGoogle Scholar
  27. 27.
    Chen HY, Hao JM, Wang HJ, Xi CY, Meng XC, Cai SX, Zhao FY (2007) J Mol Catal A 278:6CrossRefGoogle Scholar
  28. 28.
    Jansat S, Gomez M, Philippot K, Muller G, Guiu E, Claver C, Castillon S, Chaudret B (2004) J Am Chem Soc 126:1592CrossRefGoogle Scholar
  29. 29.
    Patel A, Patel A (2018) Catal Lett 148:3534CrossRefGoogle Scholar
  30. 30.
    Osawa T, Kitano M, Harada T, Takayasu O (2009) Catal Lett 128:413CrossRefGoogle Scholar
  31. 31.
    Jiang HY, Zhang SS, Sun B (2018) Catal Lett 148:1336CrossRefGoogle Scholar
  32. 32.
    Gellman AJ, Tysoe WT, Zaera F (2015) Catal Lett 145:220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and ResourcesChongqing Technology and Business UniversityChongqingChina

Personalised recommendations