Advertisement

Baeyer–Villiger Oxidation of Cyclohexanone by Hydrogen Peroxide with Fe3O4@GO as Catalyst Under Solvent Free Conditions

  • Guansheng Xiao
  • Xi Gao
  • Weiting Yan
  • Tao Wu
  • Xinhua PengEmail author
Article
  • 8 Downloads

Abstract

An efficient magnetic nanocomposite catalyst (Fe3O4@GO) was synthesized and utilized as a sustainable and convenient catalyst for Baeyer–Villiger oxidation. The catalyst was characterized by XRD, FT-IR, TEM, SEM, XPS, Raman and VSM. Under solvent free conditions, hydrogen peroxide as green oxidant, Fe3O4@GO showed an efficient catalytic activity and excellent selectivity for Baeyer–Villiger oxidation at room temperature. Conversion of 2-methyl cyclohexanone and selectivity of ε-heptanlactone were 84% and 94%, respectively. The catalyst can be magnetically reused and recycled for several runs without any significant loss in efficiency and selectivity.

Graphical Abstract

An efficient magnetic nanocomposite catalyst (Fe3O4@GO) was synthesized to show high catalytic activity and excellent selectivity for the Baeyer–Villiger oxidation under solvent free conditions with hydrogen peroxide.

Keywords

Baeyer–Villiger oxidation Hydrogen peroxide Fe3O4@GO Solvent free Room temperature 

Notes

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10562_2019_2765_MOESM1_ESM.pdf (159 kb)
Supplementary material 1 (PDF 158 kb)

References

  1. 1.
    Liu Y, Li Z, Shen W (2008) Recent Pat Chem Eng 1:1Google Scholar
  2. 2.
    Toebes ML, Prinsloo FF, Bitter JH (2003) J Catal 214:78CrossRefGoogle Scholar
  3. 3.
    Kuila T, Mishra AK, Khanra P (2013) Nanoscale 5:52CrossRefGoogle Scholar
  4. 4.
    Gao W (2015) Springer International Publishing, pp 61–95Google Scholar
  5. 5.
    Marcano DC, Kosynkin DV, Berlin JM (2010) ACS Nano 4:4806CrossRefGoogle Scholar
  6. 6.
    Dreyer DR, Park S, Bielawski CW (2009) Chem Soc Rev 39:228CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Murali S, Cai W (2010) Cheminform 22:3906Google Scholar
  8. 8.
    Chen D, Feng H, Li J (2012) Chem Rev 112:6027CrossRefGoogle Scholar
  9. 9.
    Dikin DA, Stankovich S, Zimney EJ (2015) Nature 448:457CrossRefGoogle Scholar
  10. 10.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Chem Commun 48:11275CrossRefGoogle Scholar
  11. 11.
    Yang S, Zhang ZH, Chen Q (2017) Appl Organomet Chem e4132.   https://doi.org/10.1002/aoc.4132
  12. 12.
    Pescarmona PP, Jacobs PA (2008) Catal Today 137:52CrossRefGoogle Scholar
  13. 13.
    Haag DR, Kung HH (2014) Top Catal 57:764CrossRefGoogle Scholar
  14. 14.
    Wiltshire JG, Li LJ, Khlobystov AN (2005) Carbon 43:1151CrossRefGoogle Scholar
  15. 15.
    Arash GC, Darvishnejad Z, Norouzi M (2015) Appl Organomet Chem 29:170CrossRefGoogle Scholar
  16. 16.
    Krow GR (1993) Org React 43:251Google Scholar
  17. 17.
    Strukul G (2010) Cheminform 29:31CrossRefGoogle Scholar
  18. 18.
    Ech JP, Carretero MA (2017) Chemcatchem 9:15CrossRefGoogle Scholar
  19. 19.
    Fischer J, Holderich WF (1999) Appl Catal A 180:435CrossRefGoogle Scholar
  20. 20.
    Schreiber SL, Liew WF (1983) Tetrahedron Lett 24:2363CrossRefGoogle Scholar
  21. 21.
    Cesar JS, Jose RR (2011) Tetrahedron 2008:64Google Scholar
  22. 22.
    Benito A, Moustafa FA, Miguel AS (1995) Tetrahedron Lett 36:3401CrossRefGoogle Scholar
  23. 23.
    Corma A, Navarro MT, Renz M (2003) J Catal 219:242CrossRefGoogle Scholar
  24. 24.
    Lei Z, Zhang Q, Wang R (2006) ChemInform 691:5767Google Scholar
  25. 25.
    Pillai UR, Sahle-Demessie E (2003) J Mol Catal A 191:93CrossRefGoogle Scholar
  26. 26.
    Zhou XT, Ji HB, Yuan QL (2009) J Porphyr Phthalocyanines 12:94CrossRefGoogle Scholar
  27. 27.
    Lei ZQ, Wei LL, Wang RR (2008) Catal Commun 9:15Google Scholar
  28. 28.
    Ma Y, Liang Z, Feng S (2015) Appl Organomet Chem 29:7CrossRefGoogle Scholar
  29. 29.
    Olszówka JE, Karcz R, Napruszewska BD (2018) Catal Commun 107:48–52CrossRefGoogle Scholar
  30. 30.
    Guan FF, Ma TT, Yuan X (2018) Catal Lett 148:443CrossRefGoogle Scholar
  31. 31.
    Modi CK, Solanki N, Vithalani R (2017) Appl Organomet Chem 32:e3910CrossRefGoogle Scholar
  32. 32.
    Cuetos A, Rioz-Martínez A, Valenzuela ML (2012) J Mol Catal B 74:178CrossRefGoogle Scholar
  33. 33.
    Torres Pazmiño DE, Dudek HM, Fraaije MW (2010) Curr Opin Chem Biol 14:138CrossRefGoogle Scholar
  34. 34.
    Du GH, Liu ZL, Xia X, Chu Q, Zhang SM (2006) J Sol-Gel Sci Technol 39:285CrossRefGoogle Scholar
  35. 35.
    Huo X, Liu J, Wang B, Zhang H, Yang Z, She X, Xi P (2013) J Mater Chem A 1:651CrossRefGoogle Scholar
  36. 36.
    Corma A, Renz M (2004) Chem Commun 35:550CrossRefGoogle Scholar
  37. 37.
    Aunkor MTH, Mahbubul IM, Saidurb R, Metselaar HSC (2016) RSC Adv 6:27807CrossRefGoogle Scholar
  38. 38.
    Li P, Jiang EY, Bai HL (2011) J Phys D 44:7879Google Scholar
  39. 39.
    Hara T, Hatakeyama M, Kim A, Ichikuni N, Shimazu S (2012) Green Chem 14:771CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guansheng Xiao
    • 1
  • Xi Gao
    • 1
  • Weiting Yan
    • 1
  • Tao Wu
    • 1
  • Xinhua Peng
    • 1
    Email author
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations