Advertisement

Bioprocess Development for the Synthesis of 4-Aminophenylacetic Acid Using Nitrilase Activity of Whole Cells of Alcaligenes faecalis MTCC 12629

  • Neerja Thakur
  • Nirmal Kant Sharma
  • Shikha Thakur
  • Monika
  • Tek Chand BhallaEmail author
Article
  • 19 Downloads

Abstract

Nitrilases are important industrial enzymes to synthesize commercially useful acids from nitriles. In the present study, an aryl specific inducible nitrilase was produced from Alcaligenes faecalis MTCC 12629 which hydrolyzed 4-aminophenylacetonitrile to 4-aminophenylacetic acid. A bioprocess was developed to synthesize 4-aminophenylacetic acid from 4-aminophenylacetonitrile at 500 ml scale under optimized reaction conditions. The maximum activity of nitrilase for biotransformation of 4-aminophenylacetonitrile was recorded in 50 mM KH2PO4/K2HPO4 buffer of pH 7 at 45 °C. Operational stability of present enzyme was found at 45 °C for fed batch reaction. The bioprocess designed at 500 ml scale included 17 U/ml catalyst amount, 50 mM substrate addition after 30 min in total five feedings for 150 min at 45 °C. The approach of substrate feeding at lower amount resulted in accumulation of 175 mM product in 500 ml reaction after five feedings of substrate. The rate of product formation was found to be 2.5 g/gdcw/h with the volumetric productivity of 26.6 g/l.

Graphical Abstract

Keywords

Nitrilase 4-Aminophenylacetonitrile 4-Aminophenylacetic acid Alcaligenes faecalis MTCC 12629 

Notes

Acknowledgement

The authors acknowledge University Grants Commission (UGC) New Delhi, India, for financial support in the form of UGC SAP SRF to Ms. Neerja Thakur and Faculty Fellowship to Prof. T. C. Bhalla under UGC-BSR scheme.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Nigam KV, Arfi T, Kumar V, Shukla P (2017) Bioengineering of nitrilases towards its use as green catalyst: applications and perspectives. Indian J Microbiol 57:131–138CrossRefGoogle Scholar
  2. 2.
    Bhalla TC, Kumar V, Kumar V, Thakur N (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol.  https://doi.org/10.1007/s12010-018-2705-7 Google Scholar
  3. 3.
    Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142–148CrossRefGoogle Scholar
  4. 4.
    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–266CrossRefGoogle Scholar
  5. 5.
    Wohlgemuth R (2010) Biocatalysis - key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724CrossRefGoogle Scholar
  6. 6.
    Mukram I, Ramesh M, Monisha TR, Nayak AS, Karegoudar TB (2016) Biodegradation of butyronitrile and demonstration of its mineralization by Rhodococcus sp. MTB5. 3 Biotech 6:141CrossRefGoogle Scholar
  7. 7.
    Nageshwar YVD, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioproc Biosyst Eng 34:515–523CrossRefGoogle Scholar
  8. 8.
    Zhu X, Gong J, Li H, Lu Z, Zhou Z, Shi J, Xu Z (2014) Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium–Pseudomonas putida CGMCC3830. Sheng Wu Gong Cheng Xue Bao 30:412–424Google Scholar
  9. 9.
    Kumar V, Bhalla TC (2013) Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatal Biotransform 31:42–48CrossRefGoogle Scholar
  10. 10.
    Vejvoda V, Sveda O, Kaplan O, Prikrylova V, Elisakova V, Himl M, Kubac D, Pelantova H, Kuzma M, Kren V, Martínkova L (2007) Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases. Biotechnol Lett 29:1119–1124CrossRefGoogle Scholar
  11. 11.
    Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T (2010) Efficient production of (R)-(-)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem 45:887–891CrossRefGoogle Scholar
  12. 12.
    Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94CrossRefGoogle Scholar
  13. 13.
    Ya-Ping Xue, Jiao Biao, Hua Deng-En, Cheng Feng, Liu Zhi-Qiang, Zheng Yu-Guo (2017) Improving catalytic performance of an arylacetonitrilase by semirational engineering. Bioprocess Biosyst Eng 40:1565–1572CrossRefGoogle Scholar
  14. 14.
    Martinkova L, Kren V (2018) Biocatalytic production of mandelic acid and analogues: a review and comparison with chemical processes. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-018-8894-8 Google Scholar
  15. 15.
    Zhang XH, Liu ZQ, Xue YP, Wang YS, Yang B, Zheng YG (2018) Production of R-mandelic acid using nitrilase from recombinant E. coli cells immobilized with tris (hydroxymethyl) phosphine. Appl Biochem Biotechnol 184:1024–1035CrossRefGoogle Scholar
  16. 16.
    Thakur N, Kumar V, Thakur S, Sharma N, Sheetal Bhalla TC (2018) Biotransformation of 4-hydroxyphenylacetonitrile to 4-hydroxyphenylacetic acid using whole cell arylacetonitrilases of Alcaligenes faecalis MTCC 12629. Process Biochem 73:117–123CrossRefGoogle Scholar
  17. 17.
    Ekwuribe NN, Rodger Liddle (2011) Methods and compositions employing 4-aminophenylacetc acid compounds. United States Patent US 8,048,924 B2Google Scholar
  18. 18.
    Bedair AH, Ali FM, El-Agrody AM, Eid FA, El-Nassag MAA, El-Sherbeny G (2006) Preparation of 4-aminophenylacetic acid derivatives with promising antimicrobial activity. Acta Pharm 56:273–284Google Scholar
  19. 19.
    Egelkamp R, Schneider D, Hertel R, Daniel R (2017) Nitrile-degrading bacteria isolated from compost. Front Environ Sci.  https://doi.org/10.3389/fenvs.2017.00056 Google Scholar
  20. 20.
    Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605CrossRefGoogle Scholar
  21. 21.
    Vergne-Vaxelaire C, Bordier FZ, Fossey A, Besnard-Gonnet M, Debard A, Mariage A et al (2013) Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal 355:1763–1779CrossRefGoogle Scholar
  22. 22.
    Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159CrossRefGoogle Scholar
  23. 23.
    Wang H, Fan H, Sun H, Zhao L, Wei D (2015) Process development for the production of (R)-(−)-mandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Org Process Res Dev 19:2012–2016CrossRefGoogle Scholar
  24. 24.
    Banerjee A, Kaul P, Banerjee U (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418CrossRefGoogle Scholar
  25. 25.
    Vesela AB, Krenkova A, Martinkova L (2015) Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis. Mol Biotechnol 57:466–474CrossRefGoogle Scholar
  26. 26.
    Rustler S, Muller A, Windeisen V, Chmura A, Fernandes BCM, Kiziak C, Stolz A (2007) Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191. Enzyme Microb Technol 40:598–606CrossRefGoogle Scholar
  27. 27.
    He YC, Xu JH, Su JH, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440CrossRefGoogle Scholar
  28. 28.
    Zhang XH, Liu ZQ, Xue YP, Xu M, Zheng YG (2016) Nirilase-catalyzed conversion of (R, S)-mandelonitrile by immobilized recombinant Escherichia coli cells harbouring nitrilase. Biotechnol Appl Biochem 63:479–489CrossRefGoogle Scholar
  29. 29.
    Sun HH, Gao WY, Fan HY, Wang HL, Wei DZ (2015) Cloning, purification and evaluation of the enzymatic properties of a novel arylacetonitrilase from Luminiphilus syltensis NOR5-1B: a potential biocatalyst for the synthesis of mandelic acid and its derivatives. Biotechnol Lett 37:1655–1661CrossRefGoogle Scholar
  30. 30.
    Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2014) Optimization of arylacetonirilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94CrossRefGoogle Scholar
  31. 31.
    Vesela AB, Petrickova A, Weyrauch P, Martinkova L (2013) Heterologous expression, purification and characterization of arylacetonitrilases from Nectria haematococca and Arthroderma benhamiae. Biocatal Biotransform 31:49–56CrossRefGoogle Scholar
  32. 32.
    Nagasawa T, Nakamura T, Yamada H (1990) e-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Micobiol 155:13–17Google Scholar
  33. 33.
    Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 12:775–782CrossRefGoogle Scholar
  34. 34.
    O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol 95:1161–1174CrossRefGoogle Scholar
  35. 35.
    Yamamoto K, Fujimatsu I, Komatsu KI (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430CrossRefGoogle Scholar
  36. 36.
    Sosedov O, Baum S, Burger S, Matzer K, Kiziak C, Stolz A (2010) Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol 76:3668–3674CrossRefGoogle Scholar
  37. 37.
    Nagasawa T, Mauger J, Yamada H (2010) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3-purification and characterization. Eur J Biochem 194:765–777CrossRefGoogle Scholar
  38. 38.
    Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym 5:467–474CrossRefGoogle Scholar
  39. 39.
    Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA 110 gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333CrossRefGoogle Scholar
  40. 40.
    Kaplan O, Vejvoda V, Charvatova-Pinvejcova A, Martínkova L (2006) Hyper induction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896CrossRefGoogle Scholar
  41. 41.
    Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2006) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353CrossRefGoogle Scholar
  42. 42.
    Sharma NN, Sharma M, Kumar H, Bhalla TC (2006) Nocardia globerula NHB-2: bench scale production of nicotinic acid. Proc Biochem 41:2078–2081CrossRefGoogle Scholar
  43. 43.
    Raj J, Singh N, Prasad S, Seth A, Bhalla TC (2007) Bioconversion of benzonitrile to benzoic acid using free and agar entrapped cells of Nocardia globerula NHB-2. Acta Microbiol Immunol Hung 54:79–88CrossRefGoogle Scholar
  44. 44.
    Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY (2011) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(−)-mandelic acid production. Bioproc Biosyst Eng 34:315–322CrossRefGoogle Scholar
  45. 45.
    Fan H, Chen L, Sun H, Wang H, Liu Q, Wei YRD (2017) Development of nitrilase-mediated process for phenylacetic acid production from phenylacetonitrile. Chem Pap 1985-1992Google Scholar
  46. 46.
    Chen J, Zheng YG, Shen YC (2010) Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotech and Appl Biochem.  https://doi.org/10.1042/BA20070106 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Neerja Thakur
    • 1
  • Nirmal Kant Sharma
    • 1
  • Shikha Thakur
    • 1
  • Monika
    • 1
  • Tek Chand Bhalla
    • 1
    Email author
  1. 1.Department of BiotechnologyH P UniversityShimlaIndia

Personalised recommendations