Advertisement

Catalysis Letters

, Volume 149, Issue 6, pp 1621–1632 | Cite as

The Decoration of Gold Core in Au@ZrO2 Nanoreactors with Trace Amounts of Pd for the Effective Reduction of 4-Nitrophenol to 4-Aminophenol

  • Brenda Acosta
  • Viridiana Evangelista
  • Serguei Miridonov
  • Sergio Fuentes
  • Andrey SimakovEmail author
Article
  • 31 Downloads

Abstract

Pd1/Au20@ZrO2 nanoreactors with the gold nuclei confined within zirconia shell and decorated with Pd were synthesized using an Au:Pd molar ratio of 20:1. The presence of even trace amounts of Pd on the gold nuclei surface, significantly enhanced catalytic activity of Pd1/Au20@ZrO2 nanoreactors in the 4-nitrophenol to 4-aminophenol transformation by four times compared to Au@ZrO2. In addition, the Pd1/Au20@ZrO2 nanoreactors remained highly stable during the reaction even under harsh conditions, i.e. without nanoreactors cleaning before the subsequent catalytic run, comparable with the stability of Au@ZrO2 nanoreactors. The presently proposed synthesis technique allowed to prepare nanoreactors of uniform structure even with relatively unstable bimetallic NPs (Pd/Au) as nuclei.

Graphical Abstract

Keywords

Nanoreactors Bimetallic Pd/Au Decoration 4-Nitrophenol reduction High stability 

Notes

Acknowledgements

The authors thank E. Flores, P. Casillas, F. Ruiz, J. Mendoza, A.G. Rodriguez Guerrero and J. Peralta for their kind technical support, and M.I. Perez Montfort for revising the English version of the manuscript. B. Acosta thank to "Cátedras CONACYT program" (project 767). This research project was partially supported by CONACyT (Mexico) and PAPIIT-UNAM (Mexico) through grants 179619, 203117, respectively, SENER-CONACyT (México) 117373, and UASLP (Grant No. C18-FAI-05-01.01, Project 288080072).

Supplementary material

10562_2019_2758_MOESM1_ESM.docx (912 kb)
Supplementary material 1 (DOCX 912 kb)

References

  1. 1.
    Yang Q, Han D, Yang H, Li C (2008) Chem Asian J 3:1214–1229CrossRefGoogle Scholar
  2. 2.
    Li X, Zhou X, Guo H, Wang C, Liu J, Sun P, Liu F, Lu G, Appl ACS (2014) Mater Interfaces 6:18661–18667CrossRefGoogle Scholar
  3. 3.
    Li X, Liu J, Guo H, Zhou X, Wang C, Sun P, Hua X, Lu G (2015) RSC Adv 5:545–551CrossRefGoogle Scholar
  4. 4.
    Liu J, Qiao S-Z, Chen J-S, Lou X-W, Xing X, Lu G-Q (2011) Chem Commun 47:12578–12591CrossRefGoogle Scholar
  5. 5.
    Argyle MD, Bartholomew CH (2015) Catalysts 5:145–269CrossRefGoogle Scholar
  6. 6.
    Lee J, Park JC, Song H (2008) Adv Mater 20:1523–1528CrossRefGoogle Scholar
  7. 7.
    Guan B, Wang T, Zeng S, Wang X, An D, Wang D, Cao Y, Ma D, Liu Y, Huo Q (2014) Nano Res 7(2):246–262CrossRefGoogle Scholar
  8. 8.
    Galeano C, Güttel R, Paul M, Arnal P, Lu AH, Schüth F (2011) Chemistry 17(30):8434–8439CrossRefGoogle Scholar
  9. 9.
    Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Appl Catal B Environ 166–167:518–528CrossRefGoogle Scholar
  10. 10.
    Nair AS, Suryanarayanan V, Pradeep T, Thomas J, Anija M, Philip R (2005) Mater Sci Eng B 117:173–182CrossRefGoogle Scholar
  11. 11.
    Lin C, Tao K, Hua D, Ma Z, Zhou S (2013) Molecules 18:12609–12620CrossRefGoogle Scholar
  12. 12.
    Guan B, Wang T, Zeng S, Wang X, An D, Wang D, Cao Y, Ma D, Liu Y, Huo Q (2014) Nano Res 7(2):246–262CrossRefGoogle Scholar
  13. 13.
    Jiang H-L, Akita T, Ishida T, Haruta M, Xu Q et al (2011) J Am Chem Soc 133(5):1304–1306CrossRefGoogle Scholar
  14. 14.
    Guttel R, Paul M, Schüth F (2011) Catal Sci Technol 1:65–68CrossRefGoogle Scholar
  15. 15.
    Jiang H-L, Umegaki T, Akita T, Zhang X-B, Haruta M, Xu Q (2010) Chem Eur J 16:3132–3137CrossRefGoogle Scholar
  16. 16.
    Smolentseva E, Kusema BT, Beloshapkin S, Estrada M, Vargas E, Murzin DYu, Castillon F, Fuentes S, Simakov A (2011) Appl Catal A Gen 392:69–79CrossRefGoogle Scholar
  17. 17.
    Pretzer LA, Song HJ, Fang Y-L, Zhao Z, Guo N, Wu T, Arslan I, Miller JT, Wong MS (2013) J Catal 298:206–217CrossRefGoogle Scholar
  18. 18.
    Gu S, Lu Y, Kaiser J, Albrecht M, Ballauf M (2015) Phys Chem Chem Phys 17:28137–28143CrossRefGoogle Scholar
  19. 19.
    Mayani VJ, Mayani AV, Kim SW (2016) Chem Eng Commun 203:539–547CrossRefGoogle Scholar
  20. 20.
    Mayani VJ, Mayani AV, Kim SW (2014) Bull Korean Chem Soc 35:1312–1316CrossRefGoogle Scholar
  21. 21.
    Anupam S, Thattarathody R, Nandini DR (2014) J Mater Chem A 2:4398–4405CrossRefGoogle Scholar
  22. 22.
    Acosta B, Evangelista V, Miridonov S, Fuentes S, Smolentseva E, Simakov A (2016) Int J Nanotechnol 13(1–3):168–184CrossRefGoogle Scholar
  23. 23.
    Fang X, Liu Z, Hsieh M-F, Chen M, Liu P, Chen C, Zheng N (2012) ACS Nano 6(5):4434–4444CrossRefGoogle Scholar
  24. 24.
    Pozun Z, Rodenbusch S, Keller E, Tran K, Tang W, Stevenson K, Henkelman G (2013) J Phys Chem C 117(15):7598–7604CrossRefGoogle Scholar
  25. 25.
    Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Catalysts 1:83–96CrossRefGoogle Scholar
  26. 26.
    Ma T, Liang F, Chen R, Liu S, Zhang H (2017) Nanomaterials 7(239):1–9Google Scholar
  27. 27.
    Turkevitch J, Stevenson P, Hillier J (1953) J Phys Chem 57(7):670–673CrossRefGoogle Scholar
  28. 28.
    Arnal PM, Comotti M, Schuth F (2006) Angew Chem Inter Ed 45:8224–8227CrossRefGoogle Scholar
  29. 29.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interfaces Sci 26:62–69CrossRefGoogle Scholar
  30. 30.
    Lu L, Wang H, Xi S, Zhang H (2002) J Mater Chem 12:156–158CrossRefGoogle Scholar
  31. 31.
    Chen X, Pan H, Liu H, Du M (2010) Electrochim Acta 56:636–643CrossRefGoogle Scholar
  32. 32.
    Lin F, Doong R (2017) J Phys Chem C 121:7844–7853CrossRefGoogle Scholar
  33. 33.
    Sun D, Zhang G, Huang J, Wang H, Li Q (2014) Materials 7:1360–1369CrossRefGoogle Scholar
  34. 34.
    Xu J, Wilson A, Rathmell A, Howe J, Chi M, Wiley B (2011) ACS Nano 5:6119–6127CrossRefGoogle Scholar
  35. 35.
    Salama T, Shido T, Ohnishi R, Ichikawa MJ (1996) J Phys Chem 100:3688–3694CrossRefGoogle Scholar
  36. 36.
    Ung T, Liz-Marzan L, Mulvaney P (2001) J Phys Chem B 105:3441–3452CrossRefGoogle Scholar
  37. 37.
    Tian ZQ, Ren B, Li JF, Yanga ZL (2007) Chem Commun 34:3514–3534CrossRefGoogle Scholar
  38. 38.
    Gurunathan S, Kim ES, Woong-Han J, Park JH, Kim J-H (2015) Molecules 20(12):22476–22498CrossRefGoogle Scholar
  39. 39.
    Arnal P, Weidenthaler C, Schuth F (2006) Chem Mater 18:2733–2739CrossRefGoogle Scholar
  40. 40.
    Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Coord Chem Rev 287:114–136CrossRefGoogle Scholar
  41. 41.
    Boronat M, Concepción P, Corma A, González S, Illas F, Serna P (2007) J Am Chem Soc 129:16230–16237CrossRefGoogle Scholar
  42. 42.
    Shimizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) J Phys Chem C 113:17803–17810CrossRefGoogle Scholar
  43. 43.
    Varade D, Haraguchi K (2014) Chem Commun 50:3014–3017CrossRefGoogle Scholar
  44. 44.
    da Silva AGM, Rodrigues TS, Taguchi LSK, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2016) J Mater Sci 51:603–614CrossRefGoogle Scholar
  45. 45.
    Liu H, Yang Q (1967) J Mater Chem 21(2011):11961–11967Google Scholar
  46. 46.
    Nuretti S, Ozgur O (2012) Curr Nanosci 8:367–374CrossRefGoogle Scholar
  47. 47.
    Shin KS, Cho YK, Choi J-Y, Kim K (2012) Appl Catal A Gen 413–414:170–175CrossRefGoogle Scholar
  48. 48.
    El-Sheikh SM, Ismail A, Al-Shara J (2013) New J Chem 37:2399–2407CrossRefGoogle Scholar
  49. 49.
    Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577–5587CrossRefGoogle Scholar
  50. 50.
    Yang-Chuang C, Dong-Hwang C (2009) J Hazard Mater 165:664–669CrossRefGoogle Scholar
  51. 51.
    Veerakumar P, Velayudham M, Lu K, Rajagopala S (2012) Appl Catal A Gen 439–440:197–205CrossRefGoogle Scholar
  52. 52.
    Jin Z, Wang F, Wang J, Yu J, Wang J (2013) Adv Funct Mater 23(17):2137–2144CrossRefGoogle Scholar
  53. 53.
    Jin Z, Xiao M, Bao Z, Wang P, Wang J (2012) Angew Chem Int Ed 51(26):6406–6410CrossRefGoogle Scholar
  54. 54.
    Smolentseva E, Costa VV, Cotta RF, Simakova O, Beloshapkin S, Gusevskaya EV, Simakov A (2015) Chem Catal Chem 7:1011–1017Google Scholar
  55. 55.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Pal T (2007) J Phys Chem C 111(12):4596–4605CrossRefGoogle Scholar
  56. 56.
    Huang X, Guo C, Zuo J, Zheng N, Stucky GD (2009) Small 5(3):361–365CrossRefGoogle Scholar
  57. 57.
    Zhang Q, Zhang T, Ge J, Yin Y (2008) Nano Lett 8(9):2867–2871CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cátedras CONACYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la TecnologíaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Posgrado en NanocienciasCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  4. 4.Departamento de ÓpticaCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations