Advertisement

Active TiO2-Nanostructured Surfaces for CO Oxidation on Rh Model Catalysts at Low-Temperature

  • R. Camposeco
  • S. Castillo
  • M. Hinojosa-Reyes
  • R. Zanella
  • Julio C. López-Curiel
  • Gustavo A. Fuentes
  • Isidro Mejía-CentenoEmail author
Article
  • 18 Downloads

Abstract

We investigated the CO oxidation at low temperature over Rh (1 wt%) supported on TiO2-nanotubes and nanoparticles. We found that tri-titanic acid phase of the nanotubes promotes the interaction between Ti4+ and Rh3+ to reduce Rh3+ to Rh1+ and Rh+1 to Rh0, compared to the anatase phase. In fact, as the Rh0/Ti4+ ratio increases, CO and OH adsorption increases and CO oxidation light-off shifts to lower temperature, from 120 to 60 °C. We found that there is a redox equilibrium between Rh0 + Ti4+ and Rhδ+ + Ti3+ (δ < 3). However, the Rh0/Ti4+ ratio, hence redox equilibrium, seems to be limited by the valence band energy of the catalysts. We concluded that there is a strong electronic metal-support interaction between nanotubes of TiO2 and Rh-nanoparticles that promotes the catalytic performance. Therefore, the valence band is a major factor determining the catalytic activity.

Graphical Abstract

Keywords

CO oxidation Rhodium TiO2 nanotubes TiO2 nanoparticles Deactivation 

Notes

Acknowledgements

Authors want to thank the financial support provided by the Mexican Institute of Petroleum via the Molecular Engineering Program (Project D.00477). RCS wishes to thank to the ICAT-UNAM and the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACyT) through the PDNPN1216.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Cheng M, Zheng Y, Wan H (2013) Top Catal 56:1299CrossRefGoogle Scholar
  2. 2.
    Su EC, Rothschild WG (1986) J Catal 99:506CrossRefGoogle Scholar
  3. 3.
    Nibbelke RH, Nievergeld AJL, Hoebink JHBJ, Marin GB (1998) Appl Catal B 19:245CrossRefGoogle Scholar
  4. 4.
    Shelef M, McCabe RW (2000) Catal Today 62:35CrossRefGoogle Scholar
  5. 5.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83CrossRefGoogle Scholar
  6. 6.
    Daté M, Haruta M (2001) J Catal 201:221CrossRefGoogle Scholar
  7. 7.
    Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Wayne D, Goodman W (2007) Surf Sci 601:5326CrossRefGoogle Scholar
  8. 8.
    Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) J Cat 225:267CrossRefGoogle Scholar
  9. 9.
    Molina LM, Hammer B (2003) Rev Lett 90:206102CrossRefGoogle Scholar
  10. 10.
    Valden M, Pak S, Lai X, Goodman DW (1998) Catal Lett 56:7CrossRefGoogle Scholar
  11. 11.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskøv JK (2004) J Catal 223:232CrossRefGoogle Scholar
  12. 12.
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang WY, Somorjai GA (2010) Nano Lett 10:2709CrossRefGoogle Scholar
  13. 13.
    Ioannides T, Efstathiou AM, Zhang ZL, Verykios XE (1995) J Catal 156:265CrossRefGoogle Scholar
  14. 14.
    Trautmann S, Baerns M (1994) J Catal 150:335CrossRefGoogle Scholar
  15. 15.
    McClure SM, Goodman DW (2009) Chem Phys Lett 469:1CrossRefGoogle Scholar
  16. 16.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  17. 17.
    Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807CrossRefGoogle Scholar
  18. 18.
    Campbell CT (2012) Nat Chem 4:597CrossRefGoogle Scholar
  19. 19.
    Hu P, Huang Z, Amghouz Z, Makke M, Hu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X (2014) Angew Chem Int Ed 53:3418CrossRefGoogle Scholar
  20. 20.
    Konsolakis M (2016) Appl Catal B 198:49CrossRefGoogle Scholar
  21. 21.
    Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18CrossRefGoogle Scholar
  22. 22.
    Camposeco R, Castillo S, Mejía I, Mugica V, Carrera R, Montoya A, Morán-Pineda M, Navarrete J, Gómez R (2012) Catal Commun 17:81CrossRefGoogle Scholar
  23. 23.
    Méndez-Cruz M, Ramirez-Solis J, Zanella R (2011) Catal Today 166:172CrossRefGoogle Scholar
  24. 24.
    Chen K, Xie S, Iglesia E, Bell AT (2000) J Catal 189:421CrossRefGoogle Scholar
  25. 25.
    López R, Gómez R (2012) J Sol-Gel Sci Technol 61:1CrossRefGoogle Scholar
  26. 26.
    Ansari SA, Cho MH (2016) Sci Rep 6:25405CrossRefGoogle Scholar
  27. 27.
    Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205CrossRefGoogle Scholar
  28. 28.
    Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343CrossRefGoogle Scholar
  29. 29.
    Weber RS (1995) J Catal 151:470CrossRefGoogle Scholar
  30. 30.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem 103:630CrossRefGoogle Scholar
  31. 31.
    Forzatti P, Lietti L (1999) Catal Today 52:165CrossRefGoogle Scholar
  32. 32.
    Bartholomew CH (2001) Appl Catal A 212:17CrossRefGoogle Scholar
  33. 33.
    Fuentes GA (1985) Appl Catal 15:33CrossRefGoogle Scholar
  34. 34.
    Levenspiel O (1979) Omnibook. Oregon State University, CorvallisGoogle Scholar
  35. 35.
    Konova P, Naydenov A, Venkov CV, Mehandjiev D, Andreeva D, Tabakova T (2004) J Mol Catal A 213:235CrossRefGoogle Scholar
  36. 36.
    Bavykin DV, Carravetta M, Kulak AN, Walsh FC (2010) Chem Mater 22:2458CrossRefGoogle Scholar
  37. 37.
    Chen Q, Du GH, Zhang S, Peng L (2002) Acta Cryst B58:587CrossRefGoogle Scholar
  38. 38.
    Liu N, Chen J, Zhang J, Schwank JW (2014) Catal Today 225:34CrossRefGoogle Scholar
  39. 39.
    Mosia S, Borowiak-Palén E, Przepiórski J, Grzmil B, Tsumura T, Toyoda M, Grzechuldka-Damszel J, Morawski AW (2010) J Phys Chem Solids 71:263CrossRefGoogle Scholar
  40. 40.
    Mejía-Centeno I, Castillo S, Camposeco R, Marín J, García LA, Fuentes GA (2015) Chem Eng J 264:873CrossRefGoogle Scholar
  41. 41.
    Ehwald H, Ewald H, Gutschick D, Hermann M, Miessner H, Ohlmann G, Schierhorn E (1991) Appl Catal 76:153CrossRefGoogle Scholar
  42. 42.
    Wong C, McCabe RW (1987) J Catal 107:535CrossRefGoogle Scholar
  43. 43.
    Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Appl Catal B 94:318CrossRefGoogle Scholar
  44. 44.
    Camposeco R, Castillo S, Rodríguez-González V, Hinojosa-Reyes M, Mejía-Centeno I (2018) J Photochem Photobiol, A 356:92CrossRefGoogle Scholar
  45. 45.
    Larichev YV, Netskina OV, Komova OV, Simagina VI (2010) Int J Hydrogen Energy 35:6501CrossRefGoogle Scholar
  46. 46.
    Sheerin E, Reddy GK, Smirniotis P (2016) Catal Today 263:75CrossRefGoogle Scholar
  47. 47.
    Wang C, Shao C, Zhang X, Liu Y (2009) Inorg Chem 48:7261CrossRefGoogle Scholar
  48. 48.
    Guang H, Lin J, Li L, Wang X, Zhang T (2016) Appl Catal B 184:299CrossRefGoogle Scholar
  49. 49.
    Zhang ZL, Kladi A, Verykios XE (1994) J Mol Catal 89:229CrossRefGoogle Scholar
  50. 50.
    Hadjiivanov K, Lamotte J, Lavalley JC (1997) Langmuir 13:3374CrossRefGoogle Scholar
  51. 51.
    Ramis G, Busca G, Lorenzelli V (1987) J Chem Soc. Faraday Trans 83:591CrossRefGoogle Scholar
  52. 52.
    Lin J, Wang X, Zhang T (2016) Chin J Catal 37:1805CrossRefGoogle Scholar
  53. 53.
    Gersten GI, Smith FW (2001) The Physics and Chemistry of Materials, 1st edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. Camposeco
    • 1
  • S. Castillo
    • 2
  • M. Hinojosa-Reyes
    • 3
  • R. Zanella
    • 1
  • Julio C. López-Curiel
    • 4
  • Gustavo A. Fuentes
    • 4
  • Isidro Mejía-Centeno
    • 2
    Email author
  1. 1.Instituto de Ciencias Aplicadas y TecnologíaUniversidad Nacional Autónoma de MéxicoMéxico CityMéxico
  2. 2.Dirección de Investigación en Transformación de HidrocarburosInstituto Mexicano del PetróleoMéxico CityMéxico
  3. 3.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  4. 4.Departamento de Ingeniería de ProcesosUniversidad A. Metropolitana-IztapalapaMéxico CityMéxico

Personalised recommendations