Work Function Based Catalytic Activity of Metallic Nanoparticles for Dye Degradation

  • Shailja Kumar
  • Rakesh Kumar SharmaEmail author


An environmentally benign, simple and mild approach has been adopted for the biogenic fabrication of Ag, Cu and Au MNPs (Metal nanoparticles) using Syzygium cumini leaf extract, at room temperature. This is an aqueous phase synthesis and excludes the use of toxic organic solvents. The TEM images revealed that the as-prepared MNPs possess spherical morphology with an average diameter of 6 nm. Application of these MNPs as nanocatalyst was investigated in decomposition of two organic dyes CR (Congo red) and RB (Rose bengal) in the presence of sodium borohydride (NaBH4), which is otherwise extremely slow. The rate constants of decomposition reactions were determined and found to follow the order—kAg > kCu > > kAu > kuncat, for both the dyes. Difference in the catalytic activity arise from the difference in their work function values. High catalytic activity of Ag NPs, as compared to Cu and Au, is attributed to its least work function value.

Graphical Abstract


Metal nanoparticles Congo red Rose bengal Work function Nanocatalysis 



The authors are highly thankful to Council of scientific and industrial research (CSIR) and University of Delhi (DU R & D Grant) for financial assistance in the form of research project. We would like to thank USIC, University of Delhi, for allowing us to use various instruments.


  1. 1.
    Kralik M, Biffis A (2001) J Mol Catal Chem 177:113CrossRefGoogle Scholar
  2. 2.
    Sun Y, Xia Y (2000) Science 298(5601):2176CrossRefGoogle Scholar
  3. 3.
    Kamat PV (2002) J Phys Chem B 106:7729CrossRefGoogle Scholar
  4. 4.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578CrossRefGoogle Scholar
  5. 5.
    Cao YC, Jin R, Mirkin CA (2002) Science 297(5586):1536CrossRefGoogle Scholar
  6. 6.
    Murray CB, Sun S, Doyle H, Betley T (2001) MRS Bull 26(12):985CrossRefGoogle Scholar
  7. 7.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589CrossRefGoogle Scholar
  8. 8.
    Brugger PA, Cuendet P, Grätzel M (1981) J Am Chem Soc 103:2923CrossRefGoogle Scholar
  9. 9.
    Grunwaldt JD, Kiener C, Wögerbauer C, Baiker A (1999) J Catal 181:223CrossRefGoogle Scholar
  10. 10.
    Pal T, Jana NR, Sau TK (1997) Corros Sci 39:981CrossRefGoogle Scholar
  11. 11.
    Chen D, Wu S (2000) Chem Mater 12:1354CrossRefGoogle Scholar
  12. 12.
    Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) J Magn Magn Mater 321(12):1838CrossRefGoogle Scholar
  13. 13.
    Xue B, Chen P, Hong Q, Lin J, Tan KL (2001) J Mater Chem 11:2378CrossRefGoogle Scholar
  14. 14.
    Pastoriza-Santos I, Liz-Marzán LM (2002) Langmuir 18(7):2888CrossRefGoogle Scholar
  15. 15.
    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Acta Nat 6(1):35Google Scholar
  16. 16.
    Prasad R, Swamy VS (2013) J Nanoparticle. Google Scholar
  17. 17.
    Ayyanar M, Subash-Babu P (2012) Asian Pac J Trop Biomed 2(3):240CrossRefGoogle Scholar
  18. 18.
    Ruan ZP, Zhang LL, Lin YM (2008) Molecules 13(10):2545CrossRefGoogle Scholar
  19. 19.
    Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Colloids Surf B 81(1):81CrossRefGoogle Scholar
  20. 20.
    Fadzelly M, Bakar A, Mohamed M, Rahmat A, Fry J (2009) Food Chem 113:479CrossRefGoogle Scholar
  21. 21.
    Dutta AK, Maji SK, Adhikary B (2013) Mater Res Bull 49:28CrossRefGoogle Scholar
  22. 22.
    Ganapuram BR, Alle M, Dadigala R, Dasari A, Maragoni V, Guttena V (2015) Int Nano Lett 5:215CrossRefGoogle Scholar
  23. 23.
    Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) J Nanoparticle Res 6:411CrossRefGoogle Scholar
  24. 24.
    Brumbaugh AD, Cohen KA, St. Angelo SK (ACS Sustainable Chem Eng 2 (8):1933Google Scholar
  25. 25.
    Pileni MP, Lisiecki I (1993) Colloids Surf A 80(1):63CrossRefGoogle Scholar
  26. 26.
    Siwach OP, Sen P (2008) J Nanoparticle Res 10:107CrossRefGoogle Scholar
  27. 27.
    Singh HP, Gupta N, Sharma SK, Sharma RK (2013) Colloids Surf A 416:43CrossRefGoogle Scholar
  28. 28.
    Mehta BK, Chhajlani BK, Shrivastava M BD (2017) J Phys Conf Ser 836:012050CrossRefGoogle Scholar
  29. 29.
    Suman TY, Rajasree SRR, Ramkumar R, Rajthilak C, Peruma (2014) Spectrochim Acta A 118:11CrossRefGoogle Scholar
  30. 30.
    Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Spectrochim Acta A 121:746CrossRefGoogle Scholar
  31. 31.
    Gibson JD, Khanal BP, Zubarev ER (2007) J Am Chem Soc 129:11653CrossRefGoogle Scholar
  32. 32.
    Murshid N, Gourevich I, Coombs NB, Kitaev V (2013) Chem Commun 49:11355CrossRefGoogle Scholar
  33. 33.
    Kumar V, Yadav SC, Yadav SK (2010) J Chem Technol Biotechnol 85:1301CrossRefGoogle Scholar
  34. 34.
    Ramesh PS, Kokila T, Geetha D (2015) Spectrochim Acta A 142:339CrossRefGoogle Scholar
  35. 35.
    Singh HP, Sharma S, Sharma SK, Sharma RK (2014) RSC Adv 4:37816CrossRefGoogle Scholar
  36. 36.
    Sharma RK, Sharma P, Maitra A (2003) J Colloid Interface Sci 265(1):134CrossRefGoogle Scholar
  37. 37.
    Jana NR, Wang ZL, Pal T (2000) Langmuir 16(6):2457CrossRefGoogle Scholar
  38. 38.
    Zhou L, Zachariah MR (2012) Chem Phys Lett 525–526:77CrossRefGoogle Scholar
  39. 39.
    Barrow GM (1985) Introduction to molecular spectroscopy. Mc Graw-Hill Book Company, Singapore, p 61Google Scholar
  40. 40.
    Gupta N, Singh HP, Sharma RK (2011) J Mol Catal Chem 335:248CrossRefGoogle Scholar
  41. 41.
    Guisbiers G, Abudukelimu G, Hourlier D (2011) Nanoscale Res Lett 6:6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanotechnology and Drug Delivery Research Lab, Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations