Immobilization of Inulinase on Aminated Multiwalled Carbon Nanotubes by Glutaraldehyde Cross-Linking for the Production of Fructose

  • Ram Sarup SinghEmail author
  • Kanika Chauhan


In the present work, an attempt was made to enhance immobilization yield and operational stability of inulinase (Exo-II) from Penicillium oxalicum onto amino (+NH2) terminated multiwalled carbon nanotubes (MWCNTs) through glutaraldehyde (GA) cross-linking. A statistical study using response surface methodology (RSM) was employed to optimise inulinase immobilization onto 3-aminopropyl-triethoxysilane (APTES) and GA modified surfaces of MWCNTs. Under optimized conditions (APTES concentration 4%; sonication time 4 h; GA concentration 2%; GA activation time 75 min; enzyme load 27.5 IU and enzyme coupling time 2.75 h), inulinase activity and immobilization yield obtained were 73.9% and 84.9%, respectively. An increase in inulinase activity (1.22-fold) and immobilization yield (1.14-fold) was observed after modification of aminated MWCNTs by GA cross-linking. Developed immobilized biocatalyst shown excellent operational stability for 43 cycles for fructose production in a batch system. Increased immobilization yield and operational stability of the developed biocatalyst onto APTES-GA functionalized MWCNTs justifies it a good candidate for fructose production from inulin.

Graphical Abstract


Penicillium oxalicum Inulinase Multiwalled carbon nanotubes Cross-linking Fructose 



Authors are thankful to the Head, Department of Biotechnology, Punjabi University, Patiala for availing necessary laboratory facilities to execute the present work.


  1. 1.
    Singh RS, Chauhan K, Pandey A, Larroche C (2018) Bioresour Technol 260:395–403CrossRefGoogle Scholar
  2. 2.
    Singh RS, Singh T, Larroche C (2018) Bioresour Technol 273:641–653CrossRefGoogle Scholar
  3. 3.
    Singh RS, Chauhan K, Singh RP (2017) In: Gahlawat SK, Salar RK, Siwach P, Duhan JS, Kumar S, Kaur P (eds) Plant biotechnology: recent advancements and developments. Springer Nature Singapore Pte Ltd., Singapore, pp 189–211CrossRefGoogle Scholar
  4. 4.
    Singh RS, Chauhan K, Kennedy JF (2017) Int J Biol Macromol 96:312–322CrossRefGoogle Scholar
  5. 5.
    Singh RS, Chauhan K, Singh RP (2018) In: Sharma HK, Panesar PS (eds) Technologies in food processing. Apple Academic Press, Oakville, pp 81–104Google Scholar
  6. 6.
    Singh RS, Chauhan K (2018) Curr Biotechnol 7:242–260CrossRefGoogle Scholar
  7. 7.
    Singh RS, Singh RP (2010) Food Technol Biotechnol 48:435–450Google Scholar
  8. 8.
    Singh RS, Singh RP, Kennedy JF (2016) Int J Biol Macromol 85:565–572CrossRefGoogle Scholar
  9. 9.
    Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA, Kuhn RC (2014) Sustain Chem Process 2:13CrossRefGoogle Scholar
  10. 10.
    Singh RS, Singh RP, Kennedy JF (2017) Int J Biol Macromole 95:87–93CrossRefGoogle Scholar
  11. 11.
    Singh RS, Dhaliwal R, Puri M (2007) J Ind Microbiol Biotechnol 34:649–655CrossRefGoogle Scholar
  12. 12.
    Garuba EO, Onilude AA (2018) J Genet Eng Biotechnol 16:341–346CrossRefGoogle Scholar
  13. 13.
    Díaz EG, Catana R, Ferreira BS, Luque S, Fernandes P, Cabral MS (2006) J Memb Sci 273:152–158CrossRefGoogle Scholar
  14. 14.
    Paula FC, Cazetta ML, Monti R, Contiero J (2007) Curr Trends Biotechnol Pharm 1:34–40Google Scholar
  15. 15.
    Gajanan K, Tijare SN (2018) Mater Today: Proceed 5:1093–1096Google Scholar
  16. 16.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Singh RS, Chauhan K, Kennedy JF (2019) Int J Biol Macromol 125:41–52CrossRefGoogle Scholar
  18. 18.
    Singh RS, Chauhan K (2017) Biocatal Agric Biotechnol 9:1–10CrossRefGoogle Scholar
  19. 19.
    Singh RS, Chauhan K (2018) 3 Bioetch 8:38Google Scholar
  20. 20.
    Singh RS, Chauhan K, Pandey A, Larroche C, Kennedy JF (2018) Int J Biol Macromol 118:1974–1983CrossRefGoogle Scholar
  21. 21.
    Miller GL (1959) Anal Chem 31:426–428CrossRefGoogle Scholar
  22. 22.
    Singh RS, Dhaliwal R, Puri M (2007) J Microbiol Biotechnol 17:733–738Google Scholar
  23. 23.
    Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  24. 24.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleria LA (2008) Talanta 76:965–977CrossRefGoogle Scholar
  25. 25.
    Singh RS, Saini GK (2013) J Scient Ind Res 72:603–610Google Scholar
  26. 26.
    Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandes-Lafuente R (2014) RSC Adv 4:1583–1600CrossRefGoogle Scholar
  27. 27.
    Stanley WL, Watters GG, Kelly SH, Chan BG, Garibaldi JA, Schade JE (1976) Biotechnol Bioeng 18:439–443CrossRefGoogle Scholar
  28. 28.
    Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) Biotechnol Biotech Equip 29:205–220CrossRefGoogle Scholar
  29. 29.
    Awad GEA, Wehaidy HR, El Aty AAA, Hassan ME (2017) Colloid Polym Sci 295:495–506CrossRefGoogle Scholar
  30. 30.
    Yewale T, Singhal RS, Vaidya AA (2013) Biocatal Agric Biotechnol 2:96–101CrossRefGoogle Scholar
  31. 31.
    Karimi M, Habibi-Rezaei M, Rezaei K, Moosavi-Movahedi AA, Kokini J (2016) Biocatal Agric Biotechnol 7:174–180CrossRefGoogle Scholar
  32. 32.
    Torabizadeh H, Mahmoudi A (2018) Biotechnol Rep 17:97–103CrossRefGoogle Scholar
  33. 33.
    Hang H, Wang C, Cheng Y, Li N, Song L (2017) Appl Biochem Biotechnol 184:453–470CrossRefGoogle Scholar
  34. 34.
    Abel-Naby AM (1993) Appl Biochem Biotechnol 38:69–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Carbohydrate and Protein Biotechnology Laboratory, Department of BiotechnologyPunjabi UniversityPatialaIndia

Personalised recommendations