Advertisement

Catalysis Letters

, Volume 149, Issue 7, pp 1825–1832 | Cite as

Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids

  • Jessica Honores
  • Diego Quezada
  • Gustavo ChacónEmail author
  • Oriol Martínez-FerratéEmail author
  • Mauricio IsaacsEmail author
Article

Abstract

A series of first row metal complexes (Co, Ni and Cu) containing commercial nitrogen ligands were synthetized and used as catalyst in the cycloaddition of CO2 to epoxides. The reaction was carried out in ionic liquids based on 1-n-butyl-3-methylimidazolium as solvents. Best catalytic results were achieved with Co catalysts in 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIm.BF4). Under optimized reaction conditions cyclic carbonates were selectively obtained with good to excellent yields, presenting a reliable alternative to synthetize the product using low cost and abundant catalytic system containing a common ligand as ethylenediamine. Finally, macrocycle effects where studied in each case comparing the conversion rates obtained by using ethylenediamine and 1,4,8,11-tetraazacyclotetradecane.

Graphical Abstract

Notes

Acknowledgements

This work was supported by Project RC 130006 CILIS, granted by Fondo de Innovación para la Competitividad, del Ministerio de Economía, Fomento y Turismo, Chile; FONDECYT 1181226, FONDECYT postdoctorado 3180061 and 3170333 and CAPES, Brazil. Authors are very thankful to Professor Jairton Dupont for all support.

References

  1. 1.
    Weaver AJ, Hillaire-Marcel C (2004) Science 304:400CrossRefPubMedGoogle Scholar
  2. 2.
    Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Nat Clim Change 4:17–22CrossRefGoogle Scholar
  3. 3.
    Lau L-S, Choong C-K, Eng Y-K (2014) Renew Energy 68:276–281CrossRefGoogle Scholar
  4. 4.
    Omae I (2012) Coord Chem Rev 256:1384–1405CrossRefGoogle Scholar
  5. 5.
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) Renew Sustain Energy Rev 39:426–443CrossRefGoogle Scholar
  6. 6.
    Heinz C, Lutz JP, Simmons EM, Miller MM, Ewing WR, Doyle AG (2018) J Am Chem Soc 140:2292–2300CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kar S, Kothandaraman J, Goeppert A, Prakash GKS (2018) J CO2 Util 23:212–218CrossRefGoogle Scholar
  8. 8.
    Natsui K, Iwakawa H, Ikemiya N, Nakata K, Einaga Y (2018) Angew Chemie Int Ed 57:2639–2643CrossRefGoogle Scholar
  9. 9.
    Chan FL, Altinkaya G, Fung N, Tanksale A (2018) Catal Today 309:242–247CrossRefGoogle Scholar
  10. 10.
    Steinlechner C, Junge H (2018) Angew Chemie Int Ed 57:44–45CrossRefGoogle Scholar
  11. 11.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  12. 12.
    Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Angew Chemie Int Ed 55:7296–7343CrossRefGoogle Scholar
  13. 13.
    Martín C, Fiorani G, Kleij AW (2015) ACS Catal 5:1353–1370CrossRefGoogle Scholar
  14. 14.
    Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Chem Rev 118:434–504CrossRefPubMedGoogle Scholar
  15. 15.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562–7563CrossRefGoogle Scholar
  16. 16.
    Milani JLS, Oliveira IS, Santos PA, Valdo AKSM Dos, Martins FT, Cangussu D, Chagas RP, Das (2018) Chin J Catal 39:245–249CrossRefGoogle Scholar
  17. 17.
    Kember MR, Buchard A, Williams CK (2011) Chem Commun 47:141–163CrossRefGoogle Scholar
  18. 18.
    Yin SF, Shimada S (2009) Chem Commun 1136–1138Google Scholar
  19. 19.
    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387CrossRefPubMedGoogle Scholar
  20. 20.
    He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GCT, Kerton FM (2014) Catal Sci Technol 4:1513–1528CrossRefGoogle Scholar
  21. 21.
    Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE (2015) ChemSusChem 8:2436–2454CrossRefPubMedGoogle Scholar
  22. 22.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953–996CrossRefPubMedGoogle Scholar
  23. 23.
    Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Chem Commun 47:2131–2133CrossRefGoogle Scholar
  24. 24.
    Omae I (2006) Catal Today 115:33–52CrossRefGoogle Scholar
  25. 25.
    Aresta M, Dibenedetto A, Tommasi I (2001) Energy Fuels 15:269–273CrossRefGoogle Scholar
  26. 26.
    Spinner NS, Vega JA, Mustain WE (2012) Catal Sci Technol 2:19–28CrossRefGoogle Scholar
  27. 27.
    Sakakura T, Kohno K (2009) Chem Commun 1312Google Scholar
  28. 28.
    North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539CrossRefGoogle Scholar
  29. 29.
    Sun J, Fujita S, Arai M (2005) J Organomet Chem 690:3490–3497CrossRefGoogle Scholar
  30. 30.
    Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S (2003) Green Chem 5:497–507CrossRefGoogle Scholar
  31. 31.
    Ochiai B, Koda K, Endo T (2012) J Polym Sci Part A Polym Chem 50:47–51CrossRefGoogle Scholar
  32. 32.
    Lenden P, Ylioja PM, González-Rodríguez C, Entwistle DA, Willis MC (2011) Green Chem 13:1980CrossRefGoogle Scholar
  33. 33.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393CrossRefPubMedGoogle Scholar
  34. 34.
    Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581CrossRefPubMedGoogle Scholar
  35. 35.
    Yoshida M, Ihara M (2004) Chem A Eur J 10:2887–2893CrossRefGoogle Scholar
  36. 36.
    Coates GW, Moore DR (2004) Angew Chemie Int Ed 43:6618–6639CrossRefGoogle Scholar
  37. 37.
    Darensbourg DJ (2007) Chem Rev 107:2388–2410CrossRefPubMedGoogle Scholar
  38. 38.
    Yue C, Su D, Zhang X, Wu W, Xiao L (2014) Catal Lett 144:1313–1321CrossRefGoogle Scholar
  39. 39.
    Luo R, Zhou X, Fang Y, Ji H (2015) Carbon N Y 82:1–11CrossRefGoogle Scholar
  40. 40.
    Gruttadauria M, Pescarmona PP, Agrigento P, Al-Amsyar S, Sorée B, Taherimehr M, Aprile C (2014) Catal Sci Technol 4:1598–1607CrossRefGoogle Scholar
  41. 41.
    Anthofer MH, Wilhelm ME, Cokoja M, Markovits IIE, Pöthig A, Mink J, Herrmann WA, Kühn FE (2014) Catal Sci Technol 4:1749CrossRefGoogle Scholar
  42. 42.
    Huang J-W, Shi M (2003) J Org Chem 68:6705–6709CrossRefPubMedGoogle Scholar
  43. 43.
    Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Org Lett 12:5728–5731CrossRefPubMedGoogle Scholar
  44. 44.
    Yang Z-Z, He L-N, Miao C-X, Chanfreau S (2010) Adv Synth Catal 352:2233–2240CrossRefGoogle Scholar
  45. 45.
    Kumar S, Jain SL, Sain B (2011) Tetrahedron Lett 52:6957–6959CrossRefGoogle Scholar
  46. 46.
    Han L, Choi H-J, Choi S-J, Liu B, Park D-W (2011) Green Chem 13:1023–1028CrossRefGoogle Scholar
  47. 47.
    Dai W-L, Yin S-F, Guo R, Luo S-L, Du X, Au C-T (2009) Catal Lett 136:35–44CrossRefGoogle Scholar
  48. 48.
    Yasuda H, He L-N, Sakakura T (2002) J Catal 209:547–550CrossRefGoogle Scholar
  49. 49.
    Tu M, Davis RJ (2001) J Catal 199:85–91CrossRefGoogle Scholar
  50. 50.
    Kim D-W, Roshan R, Tharun J, Cherian A, Park D-W (2013) Korean J Chem Eng 30:1973–1984CrossRefGoogle Scholar
  51. 51.
    Srivastava R, Srinivas D, Ratnasamy P (2005) Appl Catal A Gen 289:128–134CrossRefGoogle Scholar
  52. 52.
    Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Chem Commun 1664–1666Google Scholar
  53. 53.
    Xiao L-F, Li F-W, Peng J-J, Xia C-G (2006) J Mol Catal A Chem 253:265–269CrossRefGoogle Scholar
  54. 54.
    Paddock RL, Hiyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023–2026CrossRefGoogle Scholar
  55. 55.
    Wang M, She Y, Zhou X, Ji H (2011) Chin J Chem Eng 19:446–451CrossRefGoogle Scholar
  56. 56.
    Vignesh Babu H, Muralidharan K (2013) Dalt Trans 42:1238–1248CrossRefGoogle Scholar
  57. 57.
    Deng Q, He G, Pan Y, Ruan X, Zheng W, Yan X (2016) RSC Adv 6:2217–2224CrossRefGoogle Scholar
  58. 58.
    Wang T, Wang W, Lyu Y, Chen X, Li C, Zhang Y, Song X, Ding Y (2017) RSC Adv 7:2836–2841CrossRefGoogle Scholar
  59. 59.
    Fernández M, Longaray F, Aquino A, Borges J, Dalla F, Menezes S, Ligabue R, Einloft S (2014) J Mol Catal A Chem 392:83–88CrossRefGoogle Scholar
  60. 60.
    Jadhav AH, Thorat GM, Lee K, Lim AC, Kang H, Seo JG (2016) Catal Today 265:56–67CrossRefGoogle Scholar
  61. 61.
    Besse V, Illy N, David G, Caillol S, Boutevin B (2016) ChemSusChem 9:2167–2173CrossRefPubMedGoogle Scholar
  62. 62.
    Zhong W, Bobbink FD, Fei Z, Dyson PJ (2017) ChemSusChem 10:2728–2735CrossRefPubMedGoogle Scholar
  63. 63.
    Sadeghzadeh SM (2015) Green Chem 17:3059–3066CrossRefGoogle Scholar
  64. 64.
    Sun J, Ren J, Zhang S, Cheng W (2009) Tetrahedron Lett 50:423–426CrossRefGoogle Scholar
  65. 65.
    Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561–2563CrossRefPubMedGoogle Scholar
  66. 66.
    Shiels RA, Jones CW (2007) J Mol Catal A Chem 261:160–166CrossRefGoogle Scholar
  67. 67.
    Yu KMK, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2010) J Phys Chem A 114:3863–3872CrossRefPubMedGoogle Scholar
  68. 68.
    Decortes A, Castilla AM, Kleij AW (2010) Angew Chemie Int Ed 49:9822–9837CrossRefGoogle Scholar
  69. 69.
    Bai D, Duan S, Hai L, Jing H (2012) ChemCatChem 4:1752–1758CrossRefGoogle Scholar
  70. 70.
    Martin C, Kleij AW (2014) Beilstein J Org Chem 10:1817–1825CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pescarmona PP, Taherimehr M (2012) Catal Sci Technol 2:2169–2187CrossRefGoogle Scholar
  72. 72.
    Meléndez J, North M, Pasquale R (2007) Eur J Inorg Chem 2007:3323–3326CrossRefGoogle Scholar
  73. 73.
    Kruper WJ, Dellar DD (1995) J Org Chem 60:725–727CrossRefGoogle Scholar
  74. 74.
    Luo R, Zhou X, Zhang W, Liang Z, Jiang J, Ji H (2014) Green Chem 16:4179–4189CrossRefGoogle Scholar
  75. 75.
    Song Q-W, Zhou Z-H, He L-N (2017) Green Chem 19:3707–3728CrossRefGoogle Scholar
  76. 76.
    Whiteoak CJ, Kielland N, Laserna V, Escudero-Adan EC, Martin E, Kleij AW (2013) J Am Chem Soc 135:1228–1231CrossRefPubMedGoogle Scholar
  77. 77.
    Clegg W, Harrington RW, North M, Pasquale R (2010) Chem A Eur J 16:6828–6843CrossRefGoogle Scholar
  78. 78.
    Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) Chem A Eur J 11:6298–6314CrossRefGoogle Scholar
  79. 79.
    Yang Y, Hayashi Y, Fujii Y, Nagano T, Kita Y, Ohshima T, Okuda J, Mashima K (2012) Catal Sci Technol 2:509–513CrossRefGoogle Scholar
  80. 80.
    Anselmo D, Bocokić V, Decortes A, Escudero-Adán EC, Benet-Buchholz J, Reek JNHH, Kleij AW (2012) Polyhedron 32:49–53CrossRefGoogle Scholar
  81. 81.
    Taherimehr M, Al-Amsyar SM, Whiteoak CJ, Kleij AW, Pescarmona PP (2013) Green Chem 15:3083–3090CrossRefGoogle Scholar
  82. 82.
    Maeda C, Miyazaki Y, Ema T (2014) Catal Sci Technol 4:1482–1497CrossRefGoogle Scholar
  83. 83.
    Whiteoak CJ, Martin E, Belmonte MM, Benet-Buchholz J, Kleij AW (2012) Adv Synth Catal 354:469–476CrossRefGoogle Scholar
  84. 84.
    Fuchs MA, Zevaco TA, Ember E, Walter O, Held I, Dinjus E, Doring M (2013) Dalt Trans 42:5322–5329CrossRefGoogle Scholar
  85. 85.
    Laserna V, Fiorani G, Whiteoak CJ, Martin E, Escudero-Adan E, Kleij AW (2014) Angew Chemie Int Ed 53:10416–10419CrossRefGoogle Scholar
  86. 86.
    Buchard A, Kember MR, Sandeman KG, Williams CK (2011) Chem Commun 47:212–214CrossRefGoogle Scholar
  87. 87.
    Dengler JE, Lehenmeier MW, Klaus S, Anderson CE, Herdtweck E, Rieger B (2011) Eur J Inorg Chem 2011:336–343CrossRefGoogle Scholar
  88. 88.
    Chen F, Liu N, Dai B (2017) ACS Sustain Chem Eng 5:9065–9075CrossRefGoogle Scholar
  89. 89.
    Martinez-Ferrate O, Lopez-Valbuena JM, Belmonte MM, White AJ, Benet-Buchholz J, Britovsek GJ, Claver C, van Leeuwen PW (2016) Dalt Trans 45:3564–3576CrossRefGoogle Scholar
  90. 90.
    Hallett JP, Welton T (2011) Chem Rev 111:3508–3576CrossRefGoogle Scholar
  91. 91.
    Girard A-L, Simon N, Zanatta M, Marmitt S, Gonçalves P, Dupont J (2014) Green Chem 16:2815–2825CrossRefGoogle Scholar
  92. 92.
    Frihed TG, Fürstner A (2016) Bull Chem Soc Jpn 89:135–160CrossRefGoogle Scholar
  93. 93.
    Miao CX, Wang JQ, Wu Y, Du Y, He LN (2008) ChemSusChem 1:236–241CrossRefPubMedGoogle Scholar
  94. 94.
    Peng J, Yang HJ, Song N, Guo CY (2015) J CO2 Util 9:16–22CrossRefGoogle Scholar
  95. 95.
    Peng J, Yang H-J, Wei Z, Guo C-Y (2015) RSC Adv 5:53063–53072CrossRefGoogle Scholar
  96. 96.
    Peng J, Yang HJ, Geng Y, Wei Z, Wang L, Guo CY (2017) J CO2 Util 17:243–255CrossRefGoogle Scholar
  97. 97.
    Peng J, Yang HJ, Wang S, Ban B, Wei Z, Lei B, Guo CY (2018) J CO2 Util 24:1–9CrossRefGoogle Scholar
  98. 98.
    Peng J, Deng Y (2001) New J Chem 25:639–641CrossRefGoogle Scholar
  99. 99.
    Sun J, Zhang S, Cheng W, Ren J (2008) Tetrahedron Lett 49:3588–3591CrossRefGoogle Scholar
  100. 100.
    Lee E-H, Ahn J-Y, Dharman MM, Park D-W, Park S-W, Kim I (2008) Catal Today 131:130–134CrossRefGoogle Scholar
  101. 101.
    Martínez-Ferraté O, Chacón G, Bernardi F, Grehl T, Brüner P, Dupont J (2018) Catal Sci Technol 8:3081–3089CrossRefGoogle Scholar
  102. 102.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefPubMedGoogle Scholar
  103. 103.
    Sheldon RA (2005) Green Chem 7:267CrossRefGoogle Scholar
  104. 104.
    Gallardo-Fuentes S, Contreras R, Isaacs M, Honores J, Quezada D, Landaeta E, Ormazábal-Toledo R (2016) J CO2 Util 16:114–120CrossRefGoogle Scholar
  105. 105.
    Vivier V, Aguey F, Fournier J, Lambert J-F, Bedioui F, Che M (2006) J Phys Chem B 110:900–906CrossRefPubMedGoogle Scholar
  106. 106.
    Chauhan M, Arjmand F (2005) Transit Met Chem 481–487Google Scholar
  107. 107.
    Jacewicz D, Pranczk J, Wyrzykowski D, Zamojc K, Chmurzynski L (2014) React Kinet Mech Catal 113:321–331CrossRefGoogle Scholar
  108. 108.
    Tabassum S, Afzal M, Arjmand F (2012) J Photochem Photobiol B Biol 115:63–72CrossRefGoogle Scholar
  109. 109.
    Bosnich B, Tobe ML, Webb GA (1965) Inorg Chem 4:1109–1112CrossRefGoogle Scholar
  110. 110.
    BOSNICH B, POON CK, TOBE ML (1965) Inorg Chem 4:1102–1108CrossRefGoogle Scholar
  111. 111.
    Shim H-L, Udayakumar S, Yu J-I, Kim I, Park D-W (2009) Catal Today 148:350–354CrossRefGoogle Scholar
  112. 112.
    Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Green Chem 14:654–660CrossRefGoogle Scholar
  113. 113.
    Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J (2012) Catal Sci Technol 2:1480–1484CrossRefGoogle Scholar
  114. 114.
    Castro-Gomez F, Salassa G, Kleij AW, Bo C (2013) Chem A Eur J 19:6289–6298CrossRefGoogle Scholar
  115. 115.
    Bai D, Wang X, Song Y, Li B, Zhang L, Yan P, Jing H (2010) Chin J Catal 31:176–180CrossRefGoogle Scholar
  116. 116.
    Lang XD, Yu YC, He LN (2016) J Mol Catal A Chem 420:208–215CrossRefGoogle Scholar
  117. 117.
    Consorti CS, Aydos GLP, Ebeling G, Dupont J (2008) Org Lett 10:237–240CrossRefPubMedGoogle Scholar
  118. 118.
    Dupont J, Chacon G (2018) ChemCatChem  https://doi.org/10.1002/cctc.201801363 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Laboratory of Molecular Catalysis, Institute of ChemistryUFRGSPorto AlegreBrazil
  3. 3.Facultad de Ingeniería, Institute of Applied Chemical SciencesUniversidad Autónoma de ChileSan MiguelChile
  4. 4.Max Planck Institute for Chemical Energy ConversionMülheimGermany

Personalised recommendations