Advertisement

Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate

  • Xiao-huan Liu
  • Xiang Du
  • Jun-rui Feng
  • Mian-Bin Wu
  • Jian-ping Lin
  • Jing Guan
  • Tao WangEmail author
  • Zhao-hui ZhangEmail author
Article
  • 32 Downloads

Abstract

Derivatives of (±)-ethyl mandelate are important intermediates in the synthesis of numerous pharmaceuticals. Therefore, efficient routes for the production of these derivatives are highly desirable. The short-chain dehydrogenase/reductase (SDR) is a biocatalyst that could potentially be applied to the synthesis of (±)-ethyl mandelate; however, this enzyme requires the reduced form of the cofactor nicotine adenine dinucleotide (phosphate) (NAD(P)H), which is expensive. In this study, we developed a co-immobilization strategy to overcome the issue of NADPH demand in the SDR catalytic process. The SDR from Thermus thermophilus HB8 and the NAD(P)-dependent glucose dehydrogenase (GDH) from Thermoplasma acidophilum DSM 1728 were co-immobilized on silica gel. The properties and the catalytic abilities of this dual-enzyme system were evaluated. A final yield of 1.17 mM (±)-ethyl mandelate was obtained from the catalytic conversion of ethyl benzoylformate, with a conversion rate of ethyl benzoylformate to (S)-(+)-mandelate of 71.86% and in an enantiomeric excess of > 99% after 1.5 h. This system offers an efficient route for the biosynthesis of (±)-ethyl mandelate.

Graphical Abstract

In this study, we developed a co-immobilization strategy to overcome the issue of NADPH demand in the SDR catalytic process. The SDR from Thermus thermophilus HB8 and the NAD(P)-dependent glucose dehydrogenase (GDH) from Thermoplasma acidophilum DSM 1728 were co-immobilized on silica gel. Results showed that, this dual-system offers an efficient route for the biosynthesis of (±)-ethyl mandelate.

Keywords

Short chain dehydrogenase/reductase (SDR) Glucose dehydrogenase (GDH) Co-immobilization Ethyl benzoylformate (±)-Ethyl mandelate 

Notes

Acknowledgements

The authors are supported by the National Natural Science Foundation cultivation project of Jining medical university (Grant No. JYP201704), the Supporting Fund for Teachers’ research of Jining Medical University (Grant No. JYFC2018KJ031), the Startup Fund of Jining Medical University (Grant No. 6001/600557001), and the National Natural Science Foundation of China (Grant No. 21376215). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from the one mentioned above. We thank Hayden Peacock, PhD, from Liwen Bianji, Edanz Editing China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Supplementary material

10562_2019_2727_MOESM1_ESM.docx (127 kb)
Supplementary material 1 (DOCX 127 KB)

References

  1. 1.
    Kasprzak J, Rauter M, Denter S et al (2016) J Mol Catal B 133:176–186CrossRefGoogle Scholar
  2. 2.
    Poterała M, Dranka M, Borowiecki P (2017) Eur J Org Chem 16:2290–2304CrossRefGoogle Scholar
  3. 3.
    Zhang XH, Liu ZQ, Xue YP et al (2018) Appl Biochem Biotechnol 184: 1024–1035CrossRefGoogle Scholar
  4. 4.
    Martínková L, Křen V (2018) Appl Biochem Biotechnol 102: 3893–3900Google Scholar
  5. 5.
    Lima RN, Porto AL (2017) Catal Commun 100:157–163CrossRefGoogle Scholar
  6. 6.
    Kallberg Y, Oppermann U, Persson B (2010) FEBS J 277:2375–2386CrossRefGoogle Scholar
  7. 7.
    Persson B, Kallberg Y (2013) Chem Bio Interact 202:111–115CrossRefGoogle Scholar
  8. 8.
    Sonawane PD, Heinig U, Panda S et al (2018) Proc Natl Acad Sci USA 115:5419–5428CrossRefGoogle Scholar
  9. 9.
    Müller M, Roth S, Kilgore M et al (2018) ChemBioChem 19:1849–1852CrossRefGoogle Scholar
  10. 10.
    Riegert AS, Thoden JB, Schoenhofen IC et al (2017) Biochemistry 56:6030–6040CrossRefGoogle Scholar
  11. 11.
    Ferri S, Kojima K, Sode K (2011) J Diabetes Sci Technol 5:1068–1076CrossRefGoogle Scholar
  12. 12.
    Asada Y, Endo S, Inoue Y et al (2009) Chem Biol Interact 178:117–126CrossRefGoogle Scholar
  13. 13.
    Budgen N, Danson MJ (1986) FEBS Lett 196:207–210CrossRefGoogle Scholar
  14. 14.
    Smith L, Budgen N, Bungard S et al (1989) Biochem J 261:973–977CrossRefGoogle Scholar
  15. 15.
    Ohshima T, Ito Y, Sakuraba H al (2003) J Mol Catal B-Enzym 2:281–289CrossRefGoogle Scholar
  16. 16.
    Kanoh K, Uehara S, Iwata H et al (2014) Acta Crystallogr D 70:1271–1280CrossRefGoogle Scholar
  17. 17.
    Sambrook J, Fritsch EF, Maniatis T (2000) Q Rev Biol 186:182–183Google Scholar
  18. 18.
    Sachadyn P, Jedrzejczak R, Milewski S et al (2000) Protein Expres Purif 19:343–349CrossRefGoogle Scholar
  19. 19.
    Deng MD, Severson DK, Grund AD et al (2005) Metab Eng 7:201–214CrossRefGoogle Scholar
  20. 20.
    Kruger NJ (1998) Methods Mol Biol 32:9–15Google Scholar
  21. 21.
    Zhou S, Zhang SC, Lai DY et al (2013) Biotechnol Lett 35:359–365CrossRefGoogle Scholar
  22. 22.
    Pennacchio A, Giordano A, Pucci B et al (2010) Extremophiles 14:193–204CrossRefGoogle Scholar
  23. 23.
    Pennacchio A, Pucci B, Secundo F et al (2008) Appl Environ Microb 74:3949–3958CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-huan Liu
    • 1
  • Xiang Du
    • 1
  • Jun-rui Feng
    • 1
  • Mian-Bin Wu
    • 2
  • Jian-ping Lin
    • 2
  • Jing Guan
    • 1
  • Tao Wang
    • 1
    Email author
  • Zhao-hui Zhang
    • 3
    Email author
  1. 1.School of Biological ScienceJining Medical UniversityJiningChina
  2. 2.Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  3. 3.College of Biological and Environmental EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations