Advertisement

Base-Free Suzuki–Miyaura Coupling Reaction Using Palladium(II) Supported Catalyst in Water

  • Ravi TomarEmail author
  • Nidhi Singh
  • Neeraj Kumar
  • Vartika Tomar
  • Ramesh ChandraEmail author
Article
  • 29 Downloads

Abstract

The carbon–carbon bond formation via Suzuki–Miyaura reaction was performed in water as green solvent. Pd(OAc)2(PPh3)2 supported on magnesium hydroxide and cerium carbonate hydroxide composite was prepared and characterized by various techniques. The cross-coupling reaction of aryl halides carried out in water using mild conditions. The effects of temperature, solvents, the amount of catalyst and leaving groups were studied to find the optimization conditions for cross-coupling reaction. Various aryl halides were smoothly transformed into the biaryls in good yields. In addition, the catalyst also exhibited stability and catalytic performance in the cross-coupling of aryl halides.

Graphical Abstract

A new approach is developed for carbon–carbon bond formation via Suzuki–Miyaura reaction.2 Pd(OAc)2(PPh3)2 supported on mixed magnesium hydroxide and cerium carbonate hydroxide were prepared and characterized by XRD, XPS, SEM–EDX techniques. The cross-coupling reaction of aryl halides can be carried out in water and under mild conditions (80 °C).

Keywords

Base-free Suzuki–Miyaura coupling Water as solvent Pd(II) catalyzed Magnesium hydroxide and cerium carbonate hydroxide composite 

Notes

Acknowledgements

The present work was supported by the SERB (DST) and the University of Delhi. We thank USIC (University of Delhi, Delhi, India) for providing the NMR, IR instrument facilities and Japan Advanced Institute of Science and Technology (Japan) for SEM–EDS, XPS, XRD instruments facilities. RT is thankful to SERB (DST) senior research fellowship and also thankful to JAIST for JASSO fellowship during Japan stay. This study was funded by Science and Engineering Research Board (EMR/2016/002976).

Supplementary material

10562_2019_2723_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2900 KB)

References

  1. 1.
    Suzuki A (2011) Angew Chem Int Ed 50:6723–6733Google Scholar
  2. 2.
    Horton DA, Bourne GT, Smythe ML (2003) Chem Rev 103:893–930CrossRefGoogle Scholar
  3. 3.
    Kogan V, Aizenshtat Z, Popovitz-biro R, Neumann R (2002) Org Lett 4:3529–3532CrossRefGoogle Scholar
  4. 4.
    Thathagar MB, Beckers J, Rothenberg G (2002) J Am Chem Soc 124:11858–11859CrossRefGoogle Scholar
  5. 5.
    Reetz MT, Westermann E (2000) Angew Chem Int Ed 39:165–168CrossRefGoogle Scholar
  6. 6.
    Leadbeater NE, Marco M (2002) Org Lett 4:2973–2976CrossRefGoogle Scholar
  7. 7.
    Wu TYH, Schultz PG, Ding S (2003) Org Lett 5:3587–3590CrossRefGoogle Scholar
  8. 8.
    Kabalka GW, Pagni RM, Wang L, Namboodiri V, Hair CM (2000) Green Chem 2:120–122CrossRefGoogle Scholar
  9. 9.
    Elazab HA, Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2017) Catal Lett 147:1510–1522CrossRefGoogle Scholar
  10. 10.
    Ramírez-Rave S, Morales-Morales D, Grévy J-M (2017) Inorg Chim Acta 462:249–255CrossRefGoogle Scholar
  11. 11.
    Akiyamaa T, Taniguchib T, Saitoc N, Doib R, Honmad T, Tamenorid Y, Ohkie Y, Takahashie N, Fujiokaa H, Sato Y et al (2017) Green Chem 19:3357–3369CrossRefGoogle Scholar
  12. 12.
    Herrmann WA, Reisinger C-P, Spiegler M (1998) J Organomet Chem 557:93–96CrossRefGoogle Scholar
  13. 13.
    Navarro O, Nolan SPSPN (2003) J Am Chem Soc 125:16194–16195CrossRefGoogle Scholar
  14. 14.
    Xiong Z, Wang N, Dai M, Li A, Chen J, Yang Z (2004) Org Lett 6:3337–3340CrossRefGoogle Scholar
  15. 15.
    Asensio Revert JMM, Gomez-Sal P, Andrés R, de Jesús E (2017) Dalton Trans.  https://doi.org/10.1039/C7DT00643H Google Scholar
  16. 16.
    Revell JD, Ganesan A (2002) Org Lett 4:803–805CrossRefGoogle Scholar
  17. 17.
    Mathews CJ, Smith PJ, Welton T (2000) Chem Commun 14:1249–1250CrossRefGoogle Scholar
  18. 18.
    Patil JD, Korade SN, Patil SA, Gaikawad DS, POre DM (2015) RSC Adv.  https://doi.org/10.1039/C5RA17186E Google Scholar
  19. 19.
    Keesara S, Babu GN, Pal S (2017) Appl Organometal Chem.  https://doi.org/10.1002/aoc.3778 Google Scholar
  20. 20.
    Wang M, Yuan X, Li H, Ren L, Sun Z, Hou Y, Chu W (2015) Catal Commun 58:154–157CrossRefGoogle Scholar
  21. 21.
    Han Y, Lin C, Meng Q, Dai F, Sykes AG, Berry MT, May PS (2014) Inorg Chem 53:5494–5501CrossRefGoogle Scholar
  22. 22.
    Chen X, Hou Y, Wang H, Cao Y, He J (2008) J Phys Chem C 112:8172–8176CrossRefGoogle Scholar
  23. 23.
    Cornelio B, Rance Ga, Laronze-Cochard M, Fontana A, Sapi J, Khlobystov AN (2013) J Mater Chem A 1:8737–8744CrossRefGoogle Scholar
  24. 24.
    Ray C, Dutta S, Sahoo R, Roy A, Negishi Y, Pal T (2016) Chem Asian J 11:1588–1596CrossRefGoogle Scholar
  25. 25.
    Modak A, Bhaumik A (2016) J Mol Catal A Chem 425:147–156CrossRefGoogle Scholar
  26. 26.
    Zhi J, Song D, Li Z, Lei X, Hu A (2011) Chem Commun 47:10707–10709CrossRefGoogle Scholar
  27. 27.
    Sharma M, Sharma M, Hazarika A, Satyanarayana L, Karunakar GV, Bania KK (2017) Mol Catal 432:210–219CrossRefGoogle Scholar
  28. 28.
    Choudhary H, Nishimura S, Ebitani K (2014) J Mater Chem A 2:18687–18696CrossRefGoogle Scholar
  29. 29.
    Schroeter F, Soellner J, Strassner T (2017) ACS Catal 7:3004–3009CrossRefGoogle Scholar
  30. 30.
    Chen X, Engle KM, Wang DH, Jin-Quan Y (2009) Angew Chem Int Ed 48:5094–5115CrossRefGoogle Scholar
  31. 31.
    Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) J Am Chem Soc 124:14127–14136CrossRefGoogle Scholar
  32. 32.
    Liu L, Zhang Y, Wang Y (2005) J Org Chem 70:6122–6125CrossRefGoogle Scholar
  33. 33.
    Liang Q, Xing P, Huang Z, Dong J, Sharpless KB, Li X, Jiang B (2015) Org Lett 17:1942–1945CrossRefGoogle Scholar
  34. 34.
    Choudhary H, Jia J, Nishimura S, Ebitani K (2017) Asian J Org Chem 6:274–277CrossRefGoogle Scholar
  35. 35.
    Kakiuchi N, Maeda Y, Nishimura T, Uemura S (2001) J Org Chem 66:6620–6625CrossRefGoogle Scholar
  36. 36.
    Kakiuchi N, Nishimura T, Inoue M, Uemura S (2001) Bull Chem Soc Jpn 74:165–172CrossRefGoogle Scholar
  37. 37.
    Ping EW, Venkatasubbaiah K, Fuller TF, Jones CW (2010) Top Catal 53:1048–1054CrossRefGoogle Scholar
  38. 38.
    Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T (2012) Chem Commun 48:4332–4334CrossRefGoogle Scholar
  39. 39.
    Duan H, Li M, Zhang G, Gallagher JR, Huang Z, Sun Y, Luo Z, Chen H, Miller JT, Zou R et al (2015) ACS Catal 5:3752–3759CrossRefGoogle Scholar
  40. 40.
    Mangala K, Sinija PS, Sreekumar K (2015) J Mol Catal A Chem 407:87–92CrossRefGoogle Scholar
  41. 41.
    Yılmaz N, Baran T, Baran A, Menteş (2017) Appl Catal A Gen 531:36–44CrossRefGoogle Scholar
  42. 42.
    Sharma KK, Biradar AV, Das S, Asefa T (2011) Eur J Inorg Chem 2011:3174–3182CrossRefGoogle Scholar
  43. 43.
    Opanasenko M, Štěpnička P, Čejka J (2014) RSC Adv 4:65137–65162CrossRefGoogle Scholar
  44. 44.
    Liu C, Ni Q, Bao F, Qiu J (2011) Green Chem 13:1260–1266CrossRefGoogle Scholar
  45. 45.
    Jiang X, Sclafani J, Prasad K, Repic O, Blacklock TJ (2007) Org Process Res Dev 11:2005–2008CrossRefGoogle Scholar
  46. 46.
    Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Org Lett 2:2385–2388CrossRefGoogle Scholar
  47. 47.
    Grasa GA, Hillier AC, Nolan SP (2001) Org Lett 3:1077–1080CrossRefGoogle Scholar
  48. 48.
    Paul S, Islam MM, Islam SM (2015) RSC Adv 5:42193–42221CrossRefGoogle Scholar
  49. 49.
    Tomar R, Singh N, Rathee G, Kumar N, Tomar V, Chandra R (2017) Asian J Org Chem 6:1728–1732CrossRefGoogle Scholar
  50. 50.
    Tomar R, Rathee G, Chandra I, Kumar N, Tomar V (2018) ChemistrySelect 3:1645–1649CrossRefGoogle Scholar
  51. 51.
    Tomar R, Sharma J, Nishimura S, Ebitani K (2016) Chem Lett 45:843–845CrossRefGoogle Scholar
  52. 52.
    Arya K, Tomar R (2015) Res Chem Intermed 41:3389–3400CrossRefGoogle Scholar
  53. 53.
    Arya K, Tomar R, Rawat DS (2014) Med Chem Res 23:896–904CrossRefGoogle Scholar
  54. 54.
    Mora M, Jiménez-Sanchidrián C, Ruiz JR (2006) J Colloid Interface Sci 302:568–575CrossRefGoogle Scholar
  55. 55.
    Nefedov VI, Salyn YV, Moiseev II, Sadovskii AP, Berenbljum AS, Knizhnik AG, Mund SL (1979) Inorg Chim Acta 35:343–344CrossRefGoogle Scholar
  56. 56.
    Hussain N, Borah A, Darabdhara G, Gogoi P, Azhagan VK, Shelke MV, Das MR (2015) New J Chem 39:6631–6641CrossRefGoogle Scholar
  57. 57.
    Velauthamurty K, Higgins SJ, Rajapakse RMG, Bacsa J, van Zalinge H, Nichols RJ, Haiss W (2009) J Mater Chem 19:1850–1858CrossRefGoogle Scholar
  58. 58.
    Chen B, Li J, Dai W, Wang L, Gao S (2014) Green Chem 16:3328–3334CrossRefGoogle Scholar
  59. 59.
    Ning Y, Yang Z, Zhao H (1996) Platin Met Rev 40:80–87Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Drug Discovery & Development Laboratory, Department of ChemistryUniversity of DelhiDelhiIndia
  2. 2.Dr. B. R. Ambedkar Center for Biomedical ResearchUniversity of DelhiDelhiIndia

Personalised recommendations