Effects of Ce Addition on Fe–Cu Catalyst for Fischer–Tropsch Synthesis

  • Chang Nie
  • Haitao Zhang
  • Hongfang Ma
  • Weixin QianEmail author
  • Qiwen Sun
  • Weiyong Ying


Ce-promoted Fe–Cu catalysts were prepared by co-precipitation method. The catalysts were characterized by N2 physisorption, XRD, CO-TPD, H2-TPD, XPS and MES. The results show that the addition of cerium leads to a higher specific area of catalysts but against the adsorption of H2. Moreover, the CO adsorption and carbonization of the catalyst is enhanced with a proper addition of cerium, which is conducive to the formation of iron carbides. The reaction performance experiments indicate that the catalyst with 2 mol% Ce content is with the highest FTS activity of 97.2% CO conversion and light olefins selectivity of 17.2%.

Graphical Abstract


Fischer–Tropsch synthesis Cerium promoter Fe–Cu catalyst Light olefins 



We gratefully acknowledge the financial support of the National High Technology Research and Development Plan of China (863 plan, 2011AA05A204), the Fundamental Research Funds for the Central Universities (No. 222201917013) and the National Natural Science Foundation of China (Grant No: 21706068).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    Bukur DB, Todic B, Elbashir N (2016) Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: a review. Catal Today 275:66–75CrossRefGoogle Scholar
  2. 2.
    Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149CrossRefGoogle Scholar
  3. 3.
    Gao X, Zhang J, Chen N, Ma Q, Fan S, Zhao T, Tsubaki N (2016) Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer–Tropsch process. Chin J Catal 37:510–516CrossRefGoogle Scholar
  4. 4.
    Guo X, Lu Y, Wu P, Zhang K, Liu Q, Luo M (2016) The effect of SiO2 particle size on iron based F-T synthesis catalysts. Chin J Chem Eng 24:937–943CrossRefGoogle Scholar
  5. 5.
    Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Appl Catal A 266:181–194CrossRefGoogle Scholar
  6. 6.
    Wan H, Wu B, Zhang C, Xiang H, Li Y (2008) Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis. J Mol Catal A 283:33–42CrossRefGoogle Scholar
  7. 7.
    Zhao L, Liu G, Li J (2009) Effect of La2O3 on a precipitated iron catalyst for Fischer–Tropsch synthesis. Chin J Catal 30:637–642CrossRefGoogle Scholar
  8. 8.
    Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M, Boutonnet M (2017) Ce-promoted Co/Al2O3 catalysts for Fischer–Tropsch synthesis. Int J Hydrogen Energy 42:9754–9765CrossRefGoogle Scholar
  9. 9.
    Xu DD, Zhang HT, Ma HF, Qian WX, Ying WY (2017) Effect of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas. Catal Commun 98:90–93CrossRefGoogle Scholar
  10. 10.
    Wang DZ, Cheng XP, Huang ZE, Wang XZ, Peng SY (1991) Role of rare-earth oxides and thoria as promoters in precipitated iron-based catalysts for Fischer–Tropsch synthesis. Appl Catal 77:109–122CrossRefGoogle Scholar
  11. 11.
    Zamani Y, Bakavoli M, Rahimizadeh M, Mohajeri A, Seyedi SM (2012) Synergetic effect of La and Ba promoters on nanostructured iron catalyst in Fischer–Tropsch synthesis. Chin J Catal 33:1119–1124CrossRefGoogle Scholar
  12. 12.
    Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Appl Catal A 348:201–208CrossRefGoogle Scholar
  13. 13.
    Zhang X, Su H, Zhang Y, Gu X (2016) Effect of CeO2 promotion on the catalytic performance of Co/ZrO2 catalysts for Fischer–Tropsch synthesis. Fuel 184:162–168CrossRefGoogle Scholar
  14. 14.
    Li JB, Ma HF, Zhang HT, Sun QW, Ying WY, Fang DY (2014) Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas. Fuel Process Technol 125:119–124CrossRefGoogle Scholar
  15. 15.
    Emiel DS, Fabrizio C, Beale AM, Safonova OV, Wouter VB, Philippe S, Weckhuysen BM (2010) Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer–Tropsch synthesis: controlling µ(C). J Am Chem Soc 132:14928–14941CrossRefGoogle Scholar
  16. 16.
    Suo H, Wang S, Zhang C, Xu J, Wu B, Yang Y, Xiang H, Li YW (2012) Chemical and structural effects of silica in iron-based Fischer–Tropsch synthesis catalysts. J Catal 286:111–123CrossRefGoogle Scholar
  17. 17.
    Ding M, Yang Y, Wu B, Wang T, Xiang H, Li Y (2011) Effect of reducing agents on microstructure and catalytic performance of precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Fuel Process Technol 92:2353–2359CrossRefGoogle Scholar
  18. 18.
    Al-Dossary M, Fierro JLG, Spivey JJ (2015) Cu-promoted Fe2O3/MgO-based Fischer–Tropsch catalysts of biomass-derived syngas. Ind Eng Chem Res 54:911–921CrossRefGoogle Scholar
  19. 19.
    Ding M, Yang Y, Wu B, Xu J, Zhang C, Xiang H, Li Y (2009) Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis. J Mol Catal A 303:65–71CrossRefGoogle Scholar
  20. 20.
    Guo Q, Huang J, Qian W, Zhang H, Ma H, Ying W (2018) Effect of lanthanum on Zr-Co/γ-Al2O3 catalysts for Fischer–Tropsch synthesis. Catal Lett 148:2789–2798CrossRefGoogle Scholar
  21. 21.
    Zhang C, Zhao G, Liu K, Yong Y, Xiang H, Li Y (2010) Adsorption and reaction of CO and hydrogen on iron-based Fischer–Tropsch synthesis catalysts. J Mol Catal A 328:35–43CrossRefGoogle Scholar
  22. 22.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  23. 23.
    Qin S, Zhang C, Xu J, Yang Y, Xiang H, Li Y (2011) Fe–Mo interactions and their influence on Fischer–Tropsch synthesis performance. Appl Catal A 392:118–126CrossRefGoogle Scholar
  24. 24.
    Qin S, Zhang C, Xu J, Wu B, Xiang H, Li Y (2009) Effect of Mo addition on precipitated Fe catalysts for Fischer–Tropsch synthesis. J Mol Catal A 304:128–134CrossRefGoogle Scholar
  25. 25.
    Li J, Cheng X, Zhang C, Chang Q, Wang J, Wang X, Lv Z, Dong W, Yang Y, Li Y (2016) Effect of alkalis on iron-based Fischer–Tropsch synthesis catalysts: alkali-FeOx interaction, reduction, and catalytic performance. Appl Catal A 528:131–141CrossRefGoogle Scholar
  26. 26.
    Tian Z, Wang C, Si Z, Ma L, Chen L, Liu Q, Zhang Q, Huang H (2017) Fischer–Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal A 541:50–59CrossRefGoogle Scholar
  27. 27.
    Ding M, Yang Y, Wu B, Wang T, Ma L, Xiang H, Li Y (2011) Transformation of carbonaceous species and its influence on catalytic performance for iron-based Fischer–Tropsch synthesis catalyst. J Mol Catal A 351:165–173CrossRefGoogle Scholar
  28. 28.
    Emiel DS, Groot FMF, De Raoul B, Michael HV, Axel KG, Weckhuysen BM (2009) The role of Cu on the reduction behavior and surface properties of Fe-based Fischer–Tropsch catalysts. Phys Chem Chem Phy 12:667–680Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chang Nie
    • 1
  • Haitao Zhang
    • 1
  • Hongfang Ma
    • 1
  • Weixin Qian
    • 1
    Email author
  • Qiwen Sun
    • 2
  • Weiyong Ying
    • 1
  1. 1.Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.State Key Laboratory of Coal Liquefaction and Coal Chemical TechnologyShanghaiChina

Personalised recommendations