A Study of Support Effects for CH4 and CO Oxidation over Pd Catalysts on ALD-Modified Al2O3

  • Xinyu Mao
  • Alexandre Foucher
  • Eric A. Stach
  • Raymond J. GorteEmail author


Interactions between a metal and its oxide support can influence CO and CH4 oxidation, but promotion by the support can be difficult to study because oxides can have different surface structures and surface areas. To focus on the chemical aspects of support promotion for CO and CH4 oxidation, this study investigated the effect of support composition on Pd catalysts by preparing uniform films of NiO, Co3O4, Fe2O3, MnO2, CeO2, and ZrO2 on γ-Al2O3 using Atomic Layer Deposition (ALD). The structure of the films was characterized by XRD and STEM, and catalysts with ~ 1-wt% Pd were examined for CO and CH4 oxidation. CeO2/γ-Al2O3 was unique among the supports in greatly stabilizing the Pd dispersion to 1173 K. Rates for CO oxidation were enhanced by the presence of CeO2, Fe2O3, and MnO2, while the other oxides had no promotional effect. For CH4 oxidation, only NiO and Co3O4 were modest promoters, while the other reducible oxides even showed a negative effect on rates. Possible reasons for the differences between CH4 and CO oxidation activities are discussed.

Graphical Abstract


Methane oxidation CO oxidation Palladium Support effects Atomic Layer Deposition 



This work was funded by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant No. DE-FG02-13ER16380. The STEM work was carried out in part at the Singh Center for Nanotechnology, part of the National Nanotechnology Coordinated Infrastructure Program, which is supported by the National Science Foundation Grant NNCI-1542153.

Supplementary material

10562_2019_2699_MOESM1_ESM.pdf (328 kb)
Supplementary material 1 Figure S1, DRIFTS spectra obtained for (a) 773K-Pd/CeO2/ Al2O3, (b) 1173K-Pd/CeO2/Al2O3, (c) 773K-Pd/Al2O3 and (d) 1173K-Pd/Al2O3, after exposure to 20 mL/min pure CO at room temperature. Figure S2 (a), differential steady-state rates of CH4 oxidation on ALD-prepared Co3O4/Al2O3 and Pd/ Co3O4/Al2O3; Figure S2 (b), differential steady-state rates of CH4 oxidation on ALD-prepared NiO/Al2O3 and Pd/ NiO/Al2O3 (PDF 327 KB)


  1. 1.
    Farrauto RJ (2012) Science 337(6095):659–660Google Scholar
  2. 2.
    He JJ, Wang CX, Zhen TT, Zhao YK (2016) Johnson Matthey Technol Rev 60(3):196–203Google Scholar
  3. 3.
    Gorte RJ (2010) AIChE J 56(5):1126–1135Google Scholar
  4. 4.
    van Spronsen MA, Frenken JW, Groot IM (2017) Chem Soc Rev 46(14):4347–4374Google Scholar
  5. 5.
    Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341(6147):771–773Google Scholar
  6. 6.
    Bunluesin T, Gorte RJ, Graham GW (1997) Appl Catal B Environ 14(1–2):105–115Google Scholar
  7. 7.
    Xu H, Ni K, Li X, Fang G, Fan G (2017) RSC Adv 7(81):51403–51410Google Scholar
  8. 8.
    Hellman A, Resta A, Martin NM, Gustafson J, Trinchero A, Carlsson PA, Balmes O, Felici R, van Rijn R, Frenken J, Andersen JN (2012) J Phys Chem Lett 3(6):678–682Google Scholar
  9. 9.
    Cargnello M, Jaén JJD, Garrido JCH, Bakhmutsky K, Montini T, Gámez JJC, Gorte RJ, Fornasiero P (2012) Science 337(6095):713–717Google Scholar
  10. 10.
    Anderson RB, Stein KC, Feenan JJ, Hofer LJE (1961) Ind Eng Chem 53(10):809–812Google Scholar
  11. 11.
    Zou X, Rui Z, Ji H (2017) ACS Catal 7(3):1615–1625Google Scholar
  12. 12.
    Mahara Y, Ohyama J, Tojo T, Murata K, Ishikawa H (2016) Catal Sci Technol 6(13):4773–4776Google Scholar
  13. 13.
    Satsuma A, Tojo T, Okuda K, Yamamoto Y, Arai S, Oyama J (2015) Catal Today 242:308–314Google Scholar
  14. 14.
    Lou Y, Ma J, Hu W, Dai Q, Wang L, Zhan W, Guo Y, Cao X-M, Guo Y, Hu P, Lu G (2016) ACS Catal 6(12):8127–8139Google Scholar
  15. 15.
    Yoshida H, Nakajima T, Yazawa Y, Hattori T (2007) Appl Catal B Environ 71(1–2):70–79Google Scholar
  16. 16.
    Park JH, Ahn JH, Sim HI, Seo G, Han HS, Shin CH (2014) Catal Commun 56:157–163Google Scholar
  17. 17.
    Goodman ED, Dai S, Yang AC, Wrasman CJ, Gallo A, Bare SR, Hoffman AS, Jaramillo TF, Graham GW, Pan X, Cargnello M (2017) ACS Catal 7(7):4372–4380Google Scholar
  18. 18.
    Farrauto RJ, Lampert JK, Hobson MC, Waterman EM (1995) Appl Catal B Environ 6(3):263–270Google Scholar
  19. 19.
    Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Appl Catal A Gen 198(1–2):179–196Google Scholar
  20. 20.
    Chou TC, Kennelly T, Farrauto RJ (1992) U.S. Patent 5,169,300Google Scholar
  21. 21.
    Zafiris G, Gorte RJ (1993) J Catal 139(2):561–567Google Scholar
  22. 22.
    Liu H, Zhao B, Chen Y, Ren C, Chen Y (2017) J Rare Earths 35(11):1077–1082Google Scholar
  23. 23.
    Chen Z, Wang S, Ding Y, Zhang L, Lv L, Wang M, Wang S (2017) Appl Catal A Gen 532: 95–104Google Scholar
  24. 24.
    Shen J, Hayes RE, Wu X, Semagina N (2015) ACS Catal 5(5):2916–2920Google Scholar
  25. 25.
    Willis JJ, Goodman ED, Wu L, Riscoe AR, Martins P, Tassone CJ, Cargnello M (2017) J Am Chem Soc 139(34):11989–11997Google Scholar
  26. 26.
    Xiong H, Lester K, Ressler T, Schlögl R, Allard LF, Datye AK (2017) Catal Lett 147(5):1095–1103Google Scholar
  27. 27.
    Miller JB, Malatpure M (2015) Appl Catal A Gen 495:54–62Google Scholar
  28. 28.
    Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2004) J Am Chem Soc 126(32):9896–9897Google Scholar
  29. 29.
    Briot P, Primet M (1991) Appl Catal 68(1):301–314Google Scholar
  30. 30.
    Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A (2017) Angew Chem 56(50):15993–15997Google Scholar
  31. 31.
    Monai M, Montini T, Chen C, Fonda E, Gorte RJ, Fornasiero P (2015) ChemCatChem 7(14):2038–2046Google Scholar
  32. 32.
    Ciuparu D, Perkins E, Pfefferle L (2004) Appl Catal A Gen 263(2):145–153Google Scholar
  33. 33.
    Mihai O, Smedler G, Nylén U, Olofsson M, Olsson L (2017) Catal Sci Technol 7(14):3084–3096Google Scholar
  34. 34.
    Zhang F, Hakanoglu C, Hinojosa JA Jr, Weaver JF (2013) Surf Sci 617:249–255Google Scholar
  35. 35.
    Toso A, Colussi S, Padigapaty S, de Leitenburg C, Trovarelli A (2018) Appl Catal B Environ 230:237–245Google Scholar
  36. 36.
    Schwartz WR, Ciuparu D, Pfefferle LD (2012) J Phys Chem C 116(15):8587–8593Google Scholar
  37. 37.
    Escandón LS, Niño D, Díaz E, Ordóñez S, Díez FV (2008) Catal Commun 9(13):2291–2296Google Scholar
  38. 38.
    Onn TM, Zhang S, Arroyo-Ramirez L, Xia Y, Wang C, Pan X, Graham GW, Gorte RJ (2017) Appl Catal B Environ 201:430–437Google Scholar
  39. 39.
    Onn TM, Zhang S, Arroyo-Ramirez L, Chung YC, Graham GW, Pan X, Gorte RJ (2015) ACS Catal 5(10):5696–5701Google Scholar
  40. 40.
    Onn TM, Monai M, Dai S, Arroyo-Ramirez L, Zhang S, Pan X, Graham GW, Fornasiero P, Gorte RJ (2017) Appl Catal A Gen 534:70–77Google Scholar
  41. 41.
    Lin C, Mao X, Onn TM, Jang J, Gorte RJ (2017) Inorganics 5(4):65Google Scholar
  42. 42.
    Lin C, Jang JB, Zhang L, Stach EA, Gorte RJ (2018) ACS Catal 8(8):7679–7687Google Scholar
  43. 43.
    Onn TM, Küngas R, Fornasiero P, Huang K, Gorte RJ (2018) Inorganics 6(1):34Google Scholar
  44. 44.
    Puurunen RL (2002) PhD Thesis, Helsinki University of TechnologyGoogle Scholar
  45. 45.
    Puurunen RL (2005) J Appl Phys 97(12):9Google Scholar
  46. 46.
    Jongsomjit B, Panpranot J, Goodwin JG Jr (2001) J Catal 204(1):98–109Google Scholar
  47. 47.
    Wang HY, Ruckenstein E (2001) Catal Lett 75(1–2):13–18Google Scholar
  48. 48.
    Meng M, Lin P, Fu Y (1997) Catal Lett 48(3–4):213–222Google Scholar
  49. 49.
    Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Hernandez XIP, Wang Y, Datye AK (2016) Science 353(6295):150–154Google Scholar
  50. 50.
    Zhao S, Gorte RJ (2004) Catal Lett 92(1–2):75–80Google Scholar
  51. 51.
    Wang Q, Peng Y, Fu J, Kyzas GZ, Billah SMR, An S (2015) Appl Catal B Environ 168:42–50Google Scholar
  52. 52.
    Zavyalova U, Scholz P, Ondruschka B (2007) Appl Catal A Gen 323:226–233Google Scholar
  53. 53.
    Gélin P, Primet M (2002) Appl Catal B Environ 39(1):1–37Google Scholar
  54. 54.
    Shekhar M, Wang J, Lee WS, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2012) J Am Chem Soc 134(10):4700–4708Google Scholar
  55. 55.
    Colussi S, Gayen A, Camellone MF, Boaro M, Llorca J, Fabris S, Trovarelli A (2009) Angew Chem 48(45):8481–8484Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xinyu Mao
    • 1
  • Alexandre Foucher
    • 2
  • Eric A. Stach
    • 2
  • Raymond J. Gorte
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations