Advertisement

Direct Synthesis of Diallyl Carbonate Via Urea Transesterification with Allyl Alcohol Over Metal Chlorides

  • Dengfeng WangEmail author
  • Xuelan ZhangEmail author
  • Hainan Luo
  • Shuwei Wei
  • Xueying Zhao
Article

Abstract

A promising technique was studied towards diallyl carbonate (DAC) manufacture via urea transesterification with allyl alcohol over several metallic chlorides. It was revealed that the intermediate allyl carbamate (AC) was first generated via urea mono-alcoholysis with high yield, and subsequently AC further reacted with another allyl alcohol molecule to produce DAC. All the metal halides were evaluated for the overall reaction and the reaction of AC and allyl alcohol, respectively. This work found that the catalytic ability of catalysts originated from metal ions. Importantly, the highest yield of DAC could be achieved using LaCl3 as catalyst. In addition, the activation patterns of reactants were investigated using in situ FT-IR measurement. Based on the characterization results of X-ray power diffraction and elemental analysis of the lanthanum species, separated from the reaction conduced over LaCl3, a possible reaction mechanism was speculated.

Graphical Abstract

Keywords

Dially carbonate Urea Allyl alcohol LaCl3 

Notes

Acknowledgements

This work is subsidized by Key Research and Developement Program of Shandong Province (2018GGX107010, 2017GGX70103), National Natural Science Foundation of China (51674223), Natural Science Foundation of Shandong Province (ZR2016BL21), Science and Technology Research Program for Colleges and Universities in Shandong Province (J18KA107), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (201710904063 and 201710904064).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933CrossRefGoogle Scholar
  2. 2.
    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387CrossRefGoogle Scholar
  3. 3.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  4. 4.
    Martín C, Fiorani G, Kleij AW (2015) ACS Catal 5:1353–1370CrossRefGoogle Scholar
  5. 5.
    Shukla K, Srivastava VC (2017) Catal Rev 59:1–43CrossRefGoogle Scholar
  6. 6.
    Shaikh AG, Sivaram S (1996) Chem Rev 96:951–976CrossRefGoogle Scholar
  7. 7.
    Sun W, Shi R, Wang X, Liu S, Han X, Zhao C, Li Z, Ren J (2017) Appl Surf Sci 425:291–300CrossRefGoogle Scholar
  8. 8.
    Zhang X, Wang D, Wu G, Wang X, Jiang X, Liu S, Zhou D, Xu D, Gao J (2018) Appl Catal A 555:130–137CrossRefGoogle Scholar
  9. 9.
    Wu Y, Song X, Cai F, Xiao G (2017) J Alloys Compd 720:360–368CrossRefGoogle Scholar
  10. 10.
    Wu Y, Song X, Zhang J, Li Sh, Yang X, Wang H, Wei R, Guo L, Zhang J, Xiao G (2018) J Taiwan Inst Chem E 87:131–139CrossRefGoogle Scholar
  11. 11.
    Stoian D, Medina F, Urakawa A (2018) ACS Catal 8:3181–3193CrossRefGoogle Scholar
  12. 12.
    Petersen JH (2000) Urea. Wiley, New JerseyGoogle Scholar
  13. 13.
    Fujita S, Yamanishi Y, Arai M (2013) J Catal 297:137–141CrossRefGoogle Scholar
  14. 14.
    Wang D, Zhang X, Ma J, Yu H, Shen J, Wei W (2016) Catal Sci Technol 6:1530–1545CrossRefGoogle Scholar
  15. 15.
    Shukla K, Srivastava VC (2017) Fuel Process Technol 161:116–124CrossRefGoogle Scholar
  16. 16.
    Fakhrnasova D, Chimentão RJ, Medina F, Urakawa A (2015) ACS Catal 5:6284–6295CrossRefGoogle Scholar
  17. 17.
    An H, Ma Y, Zhao X, Wang Y (2016) Catal Today 264:136–143CrossRefGoogle Scholar
  18. 18.
    Nguyen-Phu H, Park C, Shin EW (2018) Appl Catal A 552:1–10CrossRefGoogle Scholar
  19. 19.
    Over LC, Meier MAR (2016) Green Chem 18:197–207CrossRefGoogle Scholar
  20. 20.
    Ma Q, Zhao T, Wang D, Niu W, Lv P, Tsubaki N (2013) Appl Catal A 464–465:142–148CrossRefGoogle Scholar
  21. 21.
    Wang M, Wang H, Zhao N, Wei W, Sun Y (2006) Catal Commun 7:6–10CrossRefGoogle Scholar
  22. 22.
    Manjunatha n P, Ravishankar R, Shanbhag GV (2016) ChemCatChem 8:631–639CrossRefGoogle Scholar
  23. 23.
    Jagadeeswaraiah K, Kumar CR, Prasad PSS, Lingaiah N (2014) Catal Sci Technol 4:2969–2977CrossRefGoogle Scholar
  24. 24.
    Wang D, Zhang X, Liu C, Cheng T (2015) React Kinet Mech Catal 115:597–609CrossRefGoogle Scholar
  25. 25.
    Iio K, Kobayashi K, Matsunaga M (2007) Polym Adv Technol 18:953–958CrossRefGoogle Scholar
  26. 26.
    Keuleers R, Desseyn HO, Rousseau B, Van Alsenoy C (1999) J Phys Chem A 103:4621–4630CrossRefGoogle Scholar
  27. 27.
    Li Q, Zhao N, Wei W, Sun Y (2007) J Mol Catal A 270:44–49CrossRefGoogle Scholar
  28. 28.
    Li F, Li H, Wang L, He P, Cao Y (2015) Catal Sci Technol 5:1021–1034CrossRefGoogle Scholar
  29. 29.
    Carter JC, Devia JE (1973) Spectrochim Acta A 29:623–632CrossRefGoogle Scholar
  30. 30.
    Furer VL (1998) J Mol Struct 449:53–59CrossRefGoogle Scholar
  31. 31.
    Sahni SK (1979) Transit Metal Chem 4:73–76CrossRefGoogle Scholar
  32. 32.
    Zhao W, Wang F, Peng W, Zhao N, Li J, Xiao F, Wei W, Sun Y (2008) Ind Eng Chem Res 47:5913–5917CrossRefGoogle Scholar
  33. 33.
    Beutel T (1998) J Chem Soc Faraday Trans 94:985–993CrossRefGoogle Scholar
  34. 34.
    Wang D, Zhang X, Gao Y, Xiao F, Wei W, Sun Y (2010) Fuel Process Technol 91:1081–1086CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceZaozhuang UniversityZaozhuangPeople’s Republic of China

Personalised recommendations