On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming

  • Gabriella Garbarino
  • Tullio Cavattoni
  • Paola RianiEmail author
  • Rosaria Brescia
  • Fabio Canepa
  • Guido Busca


(Co, Ni) bimetallic nanoparticles have been prepared by reducing Ni and Co chloride solutions with sodium borohydride. The obtained materials have been characterized as cast and/or after annealing by means of XRD, magnetic measurements, IR spectroscopy, FE-SEM and TEM microscopies. The resulting nanomaterials, originally amorphous, crystallize into the cubic structure cF4-Cu as homogeneous (Co, Ni) solid solution alloy and with the additional presence of Boron containing phases due to the residual preparation impurities. The bimetallic nanoparticles are active in ethanol conversion in the presence of steam. For low Boron catalysts, the addition of Nickel to Cobalt nanoparticles improves the catalytic activity in ethanol steam reforming allowing yields as high as 87% at 773 K, at high space velocities (GHSV 324,000 h−1). The performances of the catalytic unsupported nanoparticles with a Ni/Co atomic ratio equal to 0.26 appear to be better than those of conventional supported catalysts. The state of Boron impurities affect catalytic activity of bimetallic (Co, Ni) NPs. Carbonaceous materials, such as carbon nanotubes and graphitic carbon, form on the catalyst surface upon reaction.

Graphical Abstract


Ethanol steam reforming Bimetallic nanoparticles Cobalt Nickel Heterogeneous catalysts 



The collaboration of Elena Reghitto and Lea Pasquale during the preparation of their master theses is gratefully acknowledged.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Busca G (2014), Heterogeneous catalytic materials, Elsevier, New York, pp. 297–344CrossRefGoogle Scholar
  2. 2.
    Anderson JA, Fernández García M (eds) (2011) Supported metals in catalysis, 2nd Edition, World Scientific, New YorkGoogle Scholar
  3. 3.
    Ahmadi M, Mistry H, Roldan Cuenya B (2016) Phys Chem Lett 7:3519–3533CrossRefGoogle Scholar
  4. 4.
    Bion N, Duprez D, Epron F (2012) Chem Sus Chem 5:76–84CrossRefGoogle Scholar
  5. 5.
    Nahar G, Dupont V, Biofuels (2012) 3:167–191CrossRefGoogle Scholar
  6. 6.
    Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M, Ruan C, Chen H, Xu Y (2019) Sustain Energy Fuels 3:314–342CrossRefGoogle Scholar
  7. 7.
    Soykal I, Bayrama B, Sohna H, Gawadea P, Miller JT, Ozkan US (2012) Appl Catal A Gen 449:47–58CrossRefGoogle Scholar
  8. 8.
    Domínguez M, Cristiano G, López E, Llorca J (2011) Chem Eng J 176–177:280–285CrossRefGoogle Scholar
  9. 9.
    Resini C, Herrera Delgado MC, Presto S, Alemany LJ, Riani P, Marazza R, Ramis G, Busca G (2008) Int J Hydr En 33:3728–3735CrossRefGoogle Scholar
  10. 10.
    Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M (2010) Int J Hydr En 35:5356–5366CrossRefGoogle Scholar
  11. 11.
    Moretti E, Storaro L, Talon A, Chitsazan S, Garbarino G, Busca G, Finocchio E (2015) Fuel 153:166–175CrossRefGoogle Scholar
  12. 12.
    Gharahshiran VS, Yousefpour M (2018) Int J Hydr En 43:7020–7037CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Gomez A, Caballero A (2018) Mol Catal 449:122–130CrossRefGoogle Scholar
  14. 14.
    Garbarino G, Wang C, Valsamakis I, Chitsazan S, Riani P, Finocchio E, Flytzani-Stephanopoulos M, Busca G (2015) Appl Catal B Environ 174:21–34CrossRefGoogle Scholar
  15. 15.
    Garbarino G, Chitsazan S, Phung TK, Riani P, Busca G (2015) Appl Catal A Gen 505:86–97CrossRefGoogle Scholar
  16. 16.
    Riani P, Garbarino G, Lucchini MA, Canepa F, Busca G (2014) J Mol Catal A Chem 383–384:10–16CrossRefGoogle Scholar
  17. 17.
    Garbarino G, Riani P, Lucchini MA, Canepa F, Kawale S, Busca G (2013) Int J Hydr En 38:82–91CrossRefGoogle Scholar
  18. 18.
    Riani P, Garbarino G, Infantes-Molina A, Rodríguez-Castellón E, Canepa F, Busca G (2016) Appl Catal A Gen 518:67–77CrossRefGoogle Scholar
  19. 19.
    Riani P, Garbarino G, Canepa F, Busca G (2018) J Chem Technol Biotechnol 94:538–546CrossRefGoogle Scholar
  20. 20.
    Pearson Crystal Data. Crystal structure database for inorganic compounds, Release 2018, ASM international, the Material Information SocietyGoogle Scholar
  21. 21.
    Verbeeck J, Van Aert S (2004) Ultramicroscopy 101:207–224CrossRefGoogle Scholar
  22. 22.
    Delmastro A, Gozzelino G, Mazza D, Vallino M, Busca G, Lorenzelli V (1992) J Chem Soc Faraday Trans 88:2065–2070CrossRefGoogle Scholar
  23. 23.
    Mazza D, Vallino M, Busca G (1992) J Am Ceram Soc 75:1929–1934CrossRefGoogle Scholar
  24. 24.
    Simagina VI, Komova OV, Netskina OV, in Gromov A, Teipel U (eds), Metal nanopowders: production, characterization, and energetic applications (2014) 199–227Google Scholar
  25. 25.
    Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1992) Langmuir 8:771–773CrossRefGoogle Scholar
  26. 26.
    Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1993) Langmuir 9:162–169CrossRefGoogle Scholar
  27. 27.
    Dou B, Zhang H, Cui G, Wang Z, Jiang B, Wang K, Chen H, Xu Y (2017) Int J Hydr En 42:26217–26230CrossRefGoogle Scholar
  28. 28.
    Dou B, Zhang H, Cui G, Wang Z, Jiang B, Wang K, Chen H, Xu Y (2018) En Conv Manag 155:243–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Laboratorio di Chimica Delle Superfici e CatalisiUniversità Degli Studi di GenovaGenovaItaly
  2. 2.INSTM, UdR GenovaGenovaItaly
  3. 3.Dipartimento di Chimica e Chimica Industriale (DCCI)Università Degli Studi di GenovaGenovaItaly
  4. 4.Dipartimento di Farmacia (DIFAR)Università Degli Studi di GenovaGenovaItaly
  5. 5.Electron Microscopy FacilityIstituto Italiano di Tecnologia (IIT)GenovaItaly

Personalised recommendations