Advertisement

The Propylene Oxide Rearrangement Catalyzed by the Lewis Acid Sites of ZSM-5 Catalyst with Controllable Surface Acidity

  • Mengnan Liang
  • Xiangshuai Zhu
  • Weihua MaEmail author
Article

Abstract

The rearrangement of propylene oxide is greatly affected by the acidity of the catalyst. ZSM-5 zeolite with easily regulated surface acidity was used to catalyze the reaction with propionaldehyde as main product. The difference in the ratio of silica to alumina resulted in significant changes in the acidity. The results show that the ratio of the amount of Lewis acid sites (LAS) to the amount of Brønsted acid sites (BAS) has a great positive influence on the catalytic performance. When the ratio of silica to alumina reaches 50, the ratio of the LAS to BAS reaches the maximum value of 18.6, the catalytic performance is excellent. The in-situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was employed to study the adsorption and reaction behavior of propylene oxide on the ZSM-5 catalyst. Results showed that the epoxy ring of propylene oxide first adsorbs on the Lewis acid site (Al atom with empty electron orbital) of ZSM-5 catalyst to form an intermediate with the bond between C=O and C–O which then converts to the propionaldehyde. The Lewis acid sites is of great importance for the reaction.

Keywords

Propylene oxide rearrangement Propionaldehyde ZSM-5 zeolite Silica/alumina ratio Lewis acid site 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21276127).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_2687_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1414 KB)

References

  1. 1.
    Barreca D, Copley MP, Graham AE, Holmes JD, Morris MA, Seraglia R, Spalding TR, Tondello E (2006) Appl Catal A 304:14–20CrossRefGoogle Scholar
  2. 2.
    Smith BM, Skellam EJ, Oxley SJ, Graham AE (2007) Org Biomol Chem 5:1979–1982CrossRefGoogle Scholar
  3. 3.
    Smith K, El-Hiti GA, Al-Shamali M (2006) Catal Lett 109:77–82CrossRefGoogle Scholar
  4. 4.
    Wang Y, Li Z, Ma W, Kinnuda G, Qu H, Zhong Q (2016) Rsc Adv 6:57000–57008CrossRefGoogle Scholar
  5. 5.
    Serrano DP, Grieken RV, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74CrossRefGoogle Scholar
  6. 6.
    Wang Y, Ma W, Wang D, Zhong Q (2017) Chem Eng J 307:1047–1054CrossRefGoogle Scholar
  7. 7.
    Zhang J, Wang D, Ma W (2017) Nano Brief Rep Rev 13:1Google Scholar
  8. 8.
    Ma W, Si W, Wu W, Zhong Q (2011) Catal Lett 141:1032–1036CrossRefGoogle Scholar
  9. 9.
    Smith K, El-Hiti GA, Matthews I, Al-Shamali M, Watson T (2009) Catal Lett 128:101–105CrossRefGoogle Scholar
  10. 10.
    Lan DH, Wang HT, Chen L, Au CT, Yin SF (2016) Carbon 100:81–89CrossRefGoogle Scholar
  11. 11.
    Mao J, Wang Y, Zhu J, Yu J, Hu Z (2018) Appl Surf Sci 447:235–243CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Sun X, Zhang X, Fang X (2016) Catal Lett 146:1–7CrossRefGoogle Scholar
  13. 13.
    Ishihara K, Hanaki N, Yamamoto H (2010) Cheminform 26:225–230Google Scholar
  14. 14.
    Suda K, Nakajima SI, Satoh Y, Takanami T (2009) Chem Commun 40:1255–1257CrossRefGoogle Scholar
  15. 15.
    Raptis C, Garcia H, Stratakis M (2010) Angew Chem Int Ed 48:3133–3136CrossRefGoogle Scholar
  16. 16.
    Serrano DP, Uguina MA, Ovejero G, Grieken RV, Camacho M (1995) Microporous Mater 4:273–282CrossRefGoogle Scholar
  17. 17.
    Zhang XF, Yao J, Yang X (2017) Catal Lett 147:1–10CrossRefGoogle Scholar
  18. 18.
    Virnig MJ (1991) Process for isomerizing epoxides to ketones US 5032323Google Scholar
  19. 19.
    Hoelderich W, Goetz N, Hupfer L, Lermer H (1990) Preparation of aldehydes and/or ketones BU conversion of epoxides US 4980511Google Scholar
  20. 20.
    Wu Z, Liu S, Xie S, Wang Q, Qian X, Xu L (2005) React Kinet Catal Lett 84:45–51CrossRefGoogle Scholar
  21. 21.
    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) J Catal 258:243–249CrossRefGoogle Scholar
  22. 22.
    Serrano DP, Sanz R, Pizarro P, Moreno I, Medina S (2014) Appl Catal B 146:35–42CrossRefGoogle Scholar
  23. 23.
    Feng X, Sheng N, Liu Y, Chen X, Chen D, Yang C, Zhou X (2017) Acs Catal 7:2668–2675CrossRefGoogle Scholar
  24. 24.
    Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2017) Microporous Mesoporous Mater 263:243–250CrossRefGoogle Scholar
  25. 25.
    Kolobova E, Pestryakov A, Mamontov G, Kotolevich Y, Bogdanchikova N, Farias M, Vosmerikov A, Vosmerikova L, Corberan VC (2017) Fuel 188:121–131CrossRefGoogle Scholar
  26. 26.
    Gao Y, Wu G, Ma F, Liu C, Jiang F, Wang Y, Wang A (2016) Microporous Mesoporous Mater 226:251–259CrossRefGoogle Scholar
  27. 27.
    Shirazi L, Jamshidi E, Ghasemi MR (2010) Cryst Res Technol 43:1300–1306CrossRefGoogle Scholar
  28. 28.
    Yue Y, Gu L, Zhou Y, Liu H, Yuan P, Zhu H, Bai Z, Bao X (2017) Ind Eng Chem Res 56:10069–10077CrossRefGoogle Scholar
  29. 29.
    Farneth WE, Gorte RJ (1995) Chem Rev 95:615–635CrossRefGoogle Scholar
  30. 30.
    Brus J, Kobera L, Schoefberger W, Urbanová M, Klein P, Sazama P, Tabor E, Sklenak S, Fishchuk AV, Dědeček J (2015) Angew Chem Int Ed Engl 127:551–555CrossRefGoogle Scholar
  31. 31.
    Yarulina I, De KW, Bailleul S, Goetze J, Radersma M, Abouhamad E, Vollmer I, Goesten M, Mezari B, Hensen E (2018) Nat Chem 10:1Google Scholar
  32. 32.
    Li JJ (2003) Meinwald rearrangement. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Müller S, Liu Y, Vishnuvarthan M, Sun X, Veen ACV, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) J Catal 325:48–59CrossRefGoogle Scholar
  34. 34.
    Tan J, Cui J, Cui X, Deng T, Li X, Zhu Y, Li Y (2015) Acs Catal 5(12):7379–7384CrossRefGoogle Scholar
  35. 35.
    Shlykov SA, Phien TD, Trang NH (2017) Tetrahedron 73(35):5311–5320CrossRefGoogle Scholar
  36. 36.
    Sajan D, Lakshmi KU, Erdogdu Y, Joe IH (2011) Spectrochim Acta A 78:113–121CrossRefGoogle Scholar
  37. 37.
    Sajan D, Joe IH, Jayakumar VS (2010) J Raman Spectrosc 37:508–519CrossRefGoogle Scholar
  38. 38.
    Ying M, Zhang G (2016) Chem Eng J 288:70–78CrossRefGoogle Scholar
  39. 39.
    Jetzki M, Luckhaus D, Signorell R (2004) Rev Can Chim 82:915–924CrossRefGoogle Scholar
  40. 40.
    Jiang L, Li H, Wang Y, Ma W, Zhong Q (2015) Catal Commun 64:22–26CrossRefGoogle Scholar
  41. 41.
    Zhang X, Lin L, Zhang T, Liu H, Zhang X (2016) Chem Eng J 284:934–941CrossRefGoogle Scholar
  42. 42.
    Zhang G, Zhang X, Bai T, Chen T, Fan W (2015) J Energy Chem 24:108–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations