Advertisement

A Comparative Study of n-Butane Isomerization over H-Beta and H-ZSM-5 Zeolites at Low Temperatures: Effects of Acid Properties and Pore Structures

  • Wenfang Zhang
  • Pengzhao Wang
  • Chaohe Yang
  • Chunyi LiEmail author
Article
  • 4 Downloads

Abstract

The influences of acidic properties and pore structures of H-Beta and H-ZSM-5 zeolites on the reaction properties of n-butane isomerization at low temperatures were investigated. The results showed that bimolecular pathway of n-butane conversion predominates over H-ZSM-5 zeolites, while the monomolecular and bimolecular pathways occur simultaneously over H-Beta zeolites. The conversion rate of n-butane strongly relies on the amount of strong Brønsted acid sites regardless of zeolite topology. However, the topology of zeolites crucially determines the products distribution, and the density of strong Brønsted acid sites plays a secondary role. The cavities of zeolites, formed in the intersections of channels, provide the places for the bimolecular reaction. The formation of trimethyl C8 intermediates is spatially restricted in the narrow channel intersections of H-ZSM-5 zeolites, resulting in higher contribution of n-butane disproportionation reaction. In addition, the narrow pore channels of H-ZSM-5 zeolite limit the monomolecular isomerization of n-butane molecules and affect the diffusion of heavier products (pentane) produced from bimolecular reaction, leading to the severe secondary reaction and high selectivity to propane. In contrast, the pore channels of H-Beta zeolite allow the monomolecular isomerization of n-butane and the deposition of coke.

Graphical Abstract

The topology of zeolites crucially determines the products distribution.

Keywords

Zeolites Acidity Topology n-Butane isomerization 

Notes

Acknowledgements

This work was financially supported by China University of Petroleum for Postgraduate Technology Innovation Project (YCX2018036).

Supplementary material

10562_2019_2683_MOESM1_ESM.docx (766 kb)
Supplementary material 1 (DOCX 766 KB)

References

  1. 1.
    Villegas JI, Kumar N, Heikkilä T, Smiešková A, Hudec P, Salmi T, Murzin DY (2005) App Catal A 284:223CrossRefGoogle Scholar
  2. 2.
    Villegas JI, Kumar N, Heikkilä T, Lehto VP, Salmi P, Murzin DY (2006) Chem Eng J 120:83CrossRefGoogle Scholar
  3. 3.
    Dorado F, Romero R, Cañizares P (2002) Appl Catal A 236:235CrossRefGoogle Scholar
  4. 4.
    Cañizares P, De Lucas A, Dorado F, Pérez D (2000) Appl Catal A 190:233CrossRefGoogle Scholar
  5. 5.
    Oliveira AC, Essayem N, Tuel A, Clacens JM, Tâarit YB (2008) J Mol Catal A 293:31CrossRefGoogle Scholar
  6. 6.
    Babůrek E, Nováková J (1999) App Catal A 185:123CrossRefGoogle Scholar
  7. 7.
    Wang P, Zhang M, Zhang W, Yang C, Li C (2017) Ind Eng Chem Res 56:8456CrossRefGoogle Scholar
  8. 8.
    Wang P, Zhang W, Zhang Q, Xu Z, Yang C, Li C (2018) Appl Catal A 550:98CrossRefGoogle Scholar
  9. 9.
    Wulfers MJ, Jentoft FC (2015) J Catal 330:507CrossRefGoogle Scholar
  10. 10.
    Wang P, Zhang J, Wang G, Li C, Yang C (2016) J Catal 338:124CrossRefGoogle Scholar
  11. 11.
    Pirngruber GD, Zinck-Stagno OPE, Seshan K, Lercher JA (2000) J Catal 190:374CrossRefGoogle Scholar
  12. 12.
    Rossi SD, Moretti G, Ferraris G, Gazzoli D (2002) Catal Lett 78:119CrossRefGoogle Scholar
  13. 13.
    Kurniawan T, Muraza O, Bakare IA, Sanhoob MA, Al-Amer AM (2018) Ind Eng Chem Res 57:1894CrossRefGoogle Scholar
  14. 14.
    Corma A, Juan-Rajadell MI, López-Nieto JM, Martinez A, Martinez C (1994) Appl Catal A 111:175CrossRefGoogle Scholar
  15. 15.
    Babůrek E, Novakova J (2000) Appl Catal A 190:241CrossRefGoogle Scholar
  16. 16.
    Arzumanov SS, Stepanov AG, Freude D (2008) J Phys Chem C 112:11869CrossRefGoogle Scholar
  17. 17.
    Guisnet M, Bichon P, Gnep NS, Essayem N (1995) Top Catal 11–12:247Google Scholar
  18. 18.
    Yori JC, D’Amato MA, Costa G, Parera JM (1995) React Kinet Catal L 56:129CrossRefGoogle Scholar
  19. 19.
    Asuquo RA, Eder-Mirth G, Lercher JA (1995) J Catal 155:376CrossRefGoogle Scholar
  20. 20.
    Almanza LO, Narbeshuber T, D’Araujo P, Naccache C, Taarit YB (1999) Appl Catal A 178:39CrossRefGoogle Scholar
  21. 21.
    Asuquo RA, Eder-Mirth G, Seshan K, Pieterse JAZ, Lercher JA (1997) J Catal 168:292CrossRefGoogle Scholar
  22. 22.
    Nieminen V, Kangas M, Salmi T, Murzin DY (2005) Ind Eng Chem Res 44:471CrossRefGoogle Scholar
  23. 23.
    Tran MT, Gnep NS, Szabo G, Guisnet M (1998) J Catal 174:185CrossRefGoogle Scholar
  24. 24.
    Caeiro G, Carvalho RH, Wang X, Lemos MANDA, Lemos F, Guisnet M, Ribeiro FR (2006) J Mol Catal A 255:131CrossRefGoogle Scholar
  25. 25.
    Foster MD, Rivin I, Treacy MMJ, Friedrichs OD (2006) Microporous Mesoporous Mater 90:32CrossRefGoogle Scholar
  26. 26.
    Macht J, Carr RT, Iglesia E (2009) J Am Chem Soc 131:6554CrossRefGoogle Scholar
  27. 27.
    Kramer GJ, Santen RAV, Emeis CA, Nowak AK (1993) Nature 363:529CrossRefGoogle Scholar
  28. 28.
    Li X, Nagaoka K, Lercher JA (2004) J Catal 227:130CrossRefGoogle Scholar
  29. 29.
    Chen J, Cai T, Jing X, Zhu L, Zhou Y, Xiang Y, Xia D (2016) Appl Surf Sci 390:157CrossRefGoogle Scholar
  30. 30.
    Patel A, Coudurier G, Essayem N, Ve´Drine JC (1997) J Chem Soc Faraday Trans 93:347CrossRefGoogle Scholar
  31. 31.
    Sonnemans MHW, Heijer CD, Crocker M (1993) J Phys Chem 97:440CrossRefGoogle Scholar
  32. 32.
    Zhao G, Teng J, Zhang Y, Xie Z, Yue Y, Chen Q, Tang Y (2006) Appl Catal A 299:167CrossRefGoogle Scholar
  33. 33.
    Emeis CA (1993) J Catal 141:347CrossRefGoogle Scholar
  34. 34.
    Sachtler WMH, Adeeva V (1997) Appl Catal A 163:237CrossRefGoogle Scholar
  35. 35.
    Macht J, Janik MJ, Neurock M, Iglesia E (2008) J Am Chem Soc 130:10369CrossRefGoogle Scholar
  36. 36.
    Koyama TR, Hayashi Y, Horie H, Kawauchi S, Matsumoto A, Iwase Y, Sakamoto Y, Miyaji A, Motokura K, Baba T (2010) Phys Chem Chem Phys 12:2541CrossRefGoogle Scholar
  37. 37.
    Javaid R, Urata K, Furukawa S, Komatsu T (2015) Appl Catal A 491:100CrossRefGoogle Scholar
  38. 38.
    Lee K, Lee S, Jun Y, Choi M (2017) J Catal 347:222CrossRefGoogle Scholar
  39. 39.
    Cerqueira HS, Ayrault P, Datka J, Guisnet M (2000) Microporous Mesoporous Mater 38:197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wenfang Zhang
    • 1
  • Pengzhao Wang
    • 2
  • Chaohe Yang
    • 1
  • Chunyi Li
    • 1
    Email author
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China)QingdaoPeople’s Republic of China
  2. 2.National Engineering Research Center of Chemical Fertilizer CatalystFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations