Advertisement

Heterogeneous Palladium–Chitosan–CNT Core–Shell Nanohybrid Composite for Ipso-hydroxylation of Arylboronic Acids

  • Eun-Jae Shin
  • Han-Sem Kim
  • Seong-Ryu Joo
  • Ueon Sang ShinEmail author
  • Seung-Hoi KimEmail author
Article
  • 18 Downloads

Abstract

A novel palladium-nanohybrid (Pd–Chitosan–CNT) catalytic composite has been developed using CNT–chitosan nanocomposite and palladium nitrate. The prepared catalytic platform displays excellent catalytic reactivity for the ipso-hydroxylation of various arylboronic acids with a mild oxidant aqueous H2O2 at room temperature, affording the corresponding phenols in excellent yields. Significantly, the easy recovery and reusability by simple manipulation demonstrate the green credentials of this catalytic platform.

Graphical Abstract

Keywords

Palladium–chitosan–CNT nanohybrid Arylboronic acid Phenol Ipso-hydroxylation Hydrogen peroxide 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2682_MOESM1_ESM.docx (943 kb)
Supplementary material 1 (DOCX 942 KB)

References

  1. 1.
    Hall DG (2011) Boronic acids: preparation and applications in organic synthesis, medicine and materials, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Miyaura N, Suzuki A (1979) J Chem Soc Chem Commun 0:866CrossRefGoogle Scholar
  3. 3.
    Miyaura N, Yanagi T, Suzuki A (1981) Synth Commun 11:513CrossRefGoogle Scholar
  4. 4.
    Tyman JHP (1996) Synthetic and natural phenols. Elsevier, New YorkGoogle Scholar
  5. 5.
    Rappoport Z (2003) The chemistry of phenols. Wiley, WeinheimCrossRefGoogle Scholar
  6. 6.
    Fyfe CA (1971) The chemistry of the hydroxyl group. Part 1, vol 1. Wiley, New YorkGoogle Scholar
  7. 7.
    Ainley AD, Challenger F (1930) J Chem Soc 2171Google Scholar
  8. 8.
    Zhu C, Wang R, Falck JR (2012) Org Lett 14:3497Google Scholar
  9. 9.
    Kabalka GW, Hedgecock HC Jr (1975) J Org Chem 40:1776CrossRefGoogle Scholar
  10. 10.
    Molander GA, Cavalcanti LN (2011) J Org Chem 76:623CrossRefGoogle Scholar
  11. 11.
    Maleczka RE Jr, Shi F, Holmes D, Smith MR III (2003) J Am Chem Soc 125:7792CrossRefGoogle Scholar
  12. 12.
    Travis BR, Ciaramitaro BP, Borhan B (2002) Eur J Org Chem 3429Google Scholar
  13. 13.
    Webb KS, Levy D (1995) Tetrahedron Lett 36:5117CrossRefGoogle Scholar
  14. 14.
    Chatterjee N, Goswami A (2013) Tetrahedron Lett 56:1524CrossRefGoogle Scholar
  15. 15.
    Kianmehr E, Yahyaee M, Tabatabai K (2007) Tetrahedron Lett 48:2713CrossRefGoogle Scholar
  16. 16.
    Guo S, Lu L, Cai H (2014) Synlett 24:1712CrossRefGoogle Scholar
  17. 17.
    Chen DS, Huang JM (2013) Synlett 24:499CrossRefGoogle Scholar
  18. 18.
    Silveira-Dorta G, Mozon DM, Crisostomo FP, Martin T, Martin VS, Carrillo R (2015) Chem Commun 51:7027CrossRefGoogle Scholar
  19. 19.
    Kotoucova H, Strnadova I, Kovandova M, Chudoba J, Dvorakova H, Cibulka R (2014) Org Biomol Chem 12:2137CrossRefGoogle Scholar
  20. 20.
    Wang ZJ, Li R, Landfester K, Zhang KAI (2017) Polymer 126:291CrossRefGoogle Scholar
  21. 21.
    Xie HY, Han LS, Hung S, Lei X, Cheng Y, Zhao W, Sun H, Wen X, Xu QL (2017) J Org Chem 82:5236CrossRefGoogle Scholar
  22. 22.
    Sawant SD, Hudwekar AD, Kumar KAA, Venkateswarlu V, Singh PP, Vishwakarma RA (2014) Tetrahedron Lett 55:811CrossRefGoogle Scholar
  23. 23.
    Matsui K, Ishigami T, Yamaguchi T, Yamaguchi E, Tada N, Miura T, Itoh A (2014) Synlett 25:2613CrossRefGoogle Scholar
  24. 24.
    Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jorgensen KA, Xiao WJ (2012) Angew Chem Int Ed 51:784CrossRefGoogle Scholar
  25. 25.
    Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y (2010) Org Lett 12:1964CrossRefGoogle Scholar
  26. 26.
    Inamoto K, Nozawa K, Yenomoto M, Konda Y (2011) Chem Commun 47:11775CrossRefGoogle Scholar
  27. 27.
    Dar BA, Hatti PB, Singh AP, Lazar A, Sharma PR, Sharma M, Singh B (2013) Appl Catal A 466:60CrossRefGoogle Scholar
  28. 28.
    Affrose A, Azath IA, Dhakshinamoorthy A, Pitchumani K (2014) J Mol Cata A 395:500CrossRefGoogle Scholar
  29. 29.
    Bora SJ, Chetia B (2017) J Organomet Chem 851:52CrossRefGoogle Scholar
  30. 30.
    Piera J, Backvall JE (2008) Angew Chem Int Ed 47:3506CrossRefGoogle Scholar
  31. 31.
    Gupta S, Chaudhary P, Srivastava V, Kandasamy J (2016) Tetrahedron Lett 57:2506CrossRefGoogle Scholar
  32. 32.
    Mahanta A, Adhikari P, Bora U, Thakur AJ (2015) Tetrahedron Lett 56:1780CrossRefGoogle Scholar
  33. 33.
    Gohain M, du Plessis M, van Tonder JH, Bezuidenhoudt BCB (2014) Tetrahedron Lett 55:2082CrossRefGoogle Scholar
  34. 34.
    Gogoi K, Dewan A, Gogoi A, Borah G, Bora U (2014) Heteroat Chem 25:127CrossRefGoogle Scholar
  35. 35.
    Gogoi A, Bora U (2013) Tetrahedron Lett 54:1821CrossRefGoogle Scholar
  36. 36.
    Gogoi A, Bora U (2012) Synlett 23:1079CrossRefGoogle Scholar
  37. 37.
    Mulakayala N, Kumar KM, Rapolu RK, Kandagatla B, Rao P, Oruganti S, Pal M (2012) Tetrahedron Lett 53:6004CrossRefGoogle Scholar
  38. 38.
    Prakash GKS, Chacko S, Panja C, Thomas TE, Gurung L, Rasul G, Mathew T, Olah GA (2009) Adv Synth Catal 351:1567CrossRefGoogle Scholar
  39. 39.
    Khazaei M, Khazaei A, Nasrollahzadeh M, Tahsili MR (2017) Tetrahedron Lett 73:5613CrossRefGoogle Scholar
  40. 40.
    Saikia I, Hazarika M, Hussian N, Das MR, Tamuly C (2017) Tetrahedron Lett 58:4255CrossRefGoogle Scholar
  41. 41.
    Begum T, Gogoi A, Gogoi PK, Bora U (2015) Tetrahedron Lett 56:95CrossRefGoogle Scholar
  42. 42.
    Bradley JS, Schmid G (1994) Clusters and colloids: from theory to applications. VCH, Weinheim, p 523Google Scholar
  43. 43.
    Okumura K, Tomiyama T, Okuda S, Yoshida H, Niwa M (2010) J Catal 156:273Google Scholar
  44. 44.
    Park JC, Heo E, Kim A, Kim M, Park KH, Song H (2011) J Phy Chem C 115:15772CrossRefGoogle Scholar
  45. 45.
    Zhi J, Song D, Li Z, Lei X, Hu A (2011) Chem Commun 47:10707CrossRefGoogle Scholar
  46. 46.
    Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpin FX (2010) Adv Synth Catal 33:352Google Scholar
  47. 47.
    Dhakshinamoorthy A, Asiri AM, Garcia H (2015) Chem Soc Rev 44:1922CrossRefGoogle Scholar
  48. 48.
    Paul S, Islam MM, Islam SM (2015) RSC Adv 5:42193CrossRefGoogle Scholar
  49. 49.
    Garcia-Bernab A, Tzschucke CC, Bannwarth W, Haag R (2005) Adv Synth Catal 347:1389CrossRefGoogle Scholar
  50. 50.
    Schweizer S, Becht JM, Drian CL (2007) Adv Synth Catal 349:1150CrossRefGoogle Scholar
  51. 51.
    Webb JD, MacQuarrie S, McEleney K, Crudden CM (2007) J Catal 97:252Google Scholar
  52. 52.
    Khler K, Heidenreich RG, Soomro SS, Prockl SS (2008) Adv Synth Catal 350:2930CrossRefGoogle Scholar
  53. 53.
    Qiu H, Sarkar SM, Lee DH, Jin MJ (2008) Green Chem 10:37CrossRefGoogle Scholar
  54. 54.
    Sawai K, Tatumi R, Nakahodo T, Fujihara H (2008) Angew Chem Int Ed 47:6917CrossRefGoogle Scholar
  55. 55.
    Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) J Am Chem Soc 131:8262CrossRefGoogle Scholar
  56. 56.
    Jin MJ, Taher A, Kang HJ, Choi M, Ryoo R (2009) Green Chem 11:309CrossRefGoogle Scholar
  57. 57.
    Hwang JY, Kim HS, Kim JH, Shin WS, Lee SH (2015) Langmuir 31:7844CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryDankook UniversityCheonanRepublic of Korea
  2. 2.Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonanRepublic of Korea
  3. 3.Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanRepublic of Korea

Personalised recommendations