Progress in the Heterogeneous Catalytic Cyclization of CO2 with Epoxides Using Immobilized Ionic Liquids

  • Yirong Wang
  • Liying GuoEmail author
  • Longzhu Yin


Ionic liquid heterogeneous catalysis has become a new catalytic method for carbon dioxide cycloaddition because of its high catalytic activity, green efficiency, easy separation and recovery. In this paper, the research progress of the cycloaddition reaction of carbon dioxide and epoxy compounds with the ionic liquid solid catalyst supported by silica gel, molecular sieve, organic polymer material, carbon material and metal organic frameworks was reviewed. The structure characteristics and catalytic effects of supported ionic liquid catalysts with different supports were summarized and the prospect of new supported ionic liquid catalysts, such as column aromatic hydrocarbons, was prospected.

Graphical Abstract


Ionic liquids Homogeneous catalysis Immobilized catalyst Carbon dioxide Epoxide 



This work was supported by National Natural Science Foundation of China (Grant No. 21706163) and Liaoning province Department of Education Foundation (Grant No. LQGD2017020).

Author Contributions

Conceptualization, LG; writing-original draft, YW and LG; writing-review and editing, YW and LY.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the analyses, writing of the manuscript, and the decision to publish the results.


  1. 1.
    He M, Sun Y, Han B (2013) Angew Chem Int Ed 52:9620Google Scholar
  2. 2.
    Guo LY, Deng LL, Jin XC, Wu H, Yin LZ (2017) Catal Lett 147:2290Google Scholar
  3. 3.
    Ma R, Zhou YB, He LN (2016) Catal Today 274:35Google Scholar
  4. 4.
    Bai D, Duan S, Hai L, Jing H (2012) ChemCatChem 4:1752Google Scholar
  5. 5.
    Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ (2009) Catal Today 148:361Google Scholar
  6. 6.
    Dawane BS, Konda SG, Mandawad GG, Shaikh BM (2010) Eur J Med Chem 41:387Google Scholar
  7. 7.
    Xiao LF, Li FW, Peng JJ, Xia CG (2006) J Mol Catal A 253:265Google Scholar
  8. 8.
    Wang JQ, Yue XD, Cai F, He LN (2007) Catal Commun 8:167Google Scholar
  9. 9.
    Sadeghzadeh SM (2015) Green Chem 17:3059Google Scholar
  10. 10.
    Dai WL, Chen L, Yin SF, Luo SL, Au CT (2010) Catal Lett 135:295Google Scholar
  11. 11.
    Zhang W, Liu TY, Wu H, He M (2015) Chem Commun 51:682Google Scholar
  12. 12.
    Kim MI, Kim DK, Bineesh KV, Kim DW, Selvaraj M, Park DW (2013) Catal Today 200:24Google Scholar
  13. 13.
    Shi L, Wang SJ, Wong SH, Huang K (2017) Ind Eng Chem Res 56:11531Google Scholar
  14. 14.
    Zhang XL, Wang DF, Zhao N, Abdullah SNAA, Taieb A, Zeid AA, Wei W, Sun YH (2009) Catal Commun 11:43Google Scholar
  15. 15.
    Kim MI, Choi SJ, Kim DW, Park DW (2014) J Ind Eng Chem 20:3102Google Scholar
  16. 16.
    Kohrt C, Werner T (2015) ChemSusChem 8:2031Google Scholar
  17. 17.
    Vafaeezadeh M, Fattahi A (2014) J Phys Org Chem 27:163Google Scholar
  18. 18.
    Herold C, Ceeh H, Gigl T, Reiner M, Haumann M, Sachonweiz A, Hugenschmidt C (2016) Phys Stat Solidi 213:165Google Scholar
  19. 19.
    Zhang Q, Luo J, Wei Y (2010) Cheminform 12:2246Google Scholar
  20. 20.
    Montroni E, Lombardo M, Quintavalla A, Trombini C, Gruttadauria M, Giacalone F (2012) Cheminform 4:1000Google Scholar
  21. 21.
    Appaturi JN, Adam F (2013) Appl Catal B 136–137:150Google Scholar
  22. 22.
    Dai LM, Zhao Q, Fang ML, Liu RF, Dong MF, Jiang TS (2017) RSC Adv 7:32427Google Scholar
  23. 23.
    Guo LY, Deng LL, Jin XC, Wang YR, Wang HZ (2018) RSC Adv 147:2290Google Scholar
  24. 24.
    Sarmah B, Kore R, Srivastava R (2018) Inorg Chem Front 5:1609Google Scholar
  25. 25.
    Tayebee R, Abdollahi N, Ghadamgahi M (2013) J Chin Chem Soc-Taip 60:1014Google Scholar
  26. 26.
    Masteri-Farahani M, Modarres M (2016) J Mol Catal A 417:81Google Scholar
  27. 27.
    Yang K, Zhao X, Wang X (2007) J Porous Mater 14:43Google Scholar
  28. 28.
    Liang Y, Anwander R (2014) Dalton Trans 44:12521Google Scholar
  29. 29.
    Chen JX, Jin B, Dai WL, Deng SL, Cao LR, Cao ZJ, Luo SL, Luo XB, Tu XM, Au CT (2014) Appl Catal A 484:26–32Google Scholar
  30. 30.
    Jadhav AH, Thorat GM, Lee K, Lim AC, Kang H, Seo JG (2016) Catal Today 265:56Google Scholar
  31. 31.
    Kim SH, Seo JW, Shin US (2015) Bull Korean Chem Soc 36:643Google Scholar
  32. 32.
    Marcilla R, Ochoteco E, Pozo-Gonzalo C, Grande H, Pomposo JA, Mecerreyes D (2005) Macromol Rapid Commun 26:1122Google Scholar
  33. 33.
    Mannan HA, Mukhtar H, Murugesan T, Man Z, Bustam MA, Shaharun MS, Bakar MZ (2017) J Appl Polym Sci 134:44761Google Scholar
  34. 34.
    Sans V, Karbass N, Burguete MI, Compan V, Garcia-Verdugo E, Luis SV, Pawlak M (2011) Chemistry 17:1894Google Scholar
  35. 35.
    Stein A, Wang Z, Fierke MA (2010) Adv Mater 21:265Google Scholar
  36. 36.
    Jiang M, Zhang JL, Xing LB, Zhou J, Cui HY, Si WJ, Zhuo SP (2016) Chin J Chem 34:1061Google Scholar
  37. 37.
    Chou TC, Doong RA, Hu CC, Zhang B, Su DS (2014) ChemSusChem 7:841Google Scholar
  38. 38.
    Han L, Li HQ, Choi SJ, Park MS, Lee SM, Kim YJ, Park DW (2012) Appl Catal A 429:67Google Scholar
  39. 39.
    Baj S, Krawczyk T, Jasiak K, Siewniak A, Pawlyta M (2014) Appl Catal A 488:96Google Scholar
  40. 40.
    Fujie K, Yamada T, Ikeda R, Kitagawa H (2014) Angew Chem 53:11302Google Scholar
  41. 41.
    Zalomaeva OV, Maksimchuk NV, Chibiryaev AM, Kovalenko KA, Fedin VP, Balzhinimaev BS (2013) J Nat Gas Chem 22:130Google Scholar
  42. 42.
    Yao BJ, Ding LG, Li F, Li JT, Fu QJ, Ban Y, Guo A, Dong YB (2017) ACS Appl Mater Interfaces 9:38919Google Scholar
  43. 43.
    Xu ZC, Zhao GY, Ullah L, Wang M, Wang A, Zhang YQ, Zhang SJ (2018) RSC Adv 8:10009Google Scholar
  44. 44.
    Abednatanzi S, Leus K, Derakhshandeh PG, Nahra F, Keukeleere KD, Hecke KV, Driessche IS, Abbasi A, Nolan SP, Voort VD (2017) Catal Sci Technol 7:1478Google Scholar
  45. 45.
    Taherimehr M, Voorde BV, Wee LH, Martens JA, Vos DE, Pescarmona PP (2017) ChemSusChem 10:1283Google Scholar
  46. 46.
    Wang JW, Xie DY, Zhang ZG, Yang QW, Xing HB, Yang YW, Ren QL, Bao ZB (2017) AIChE J 63:2165Google Scholar
  47. 47.
    Zhao D, Liu XH, Zhu C, Kang YS, Wang P, Shi Z, Lu Y, Sun WY (2017) ChemCatChem 9:4598Google Scholar
  48. 48.
    Fujie K, Kitagawa H (2016) Coord Chem Rev 307:382Google Scholar
  49. 49.
    Cota I, Martinez FF (2017) Coord Chem Rev 351:189Google Scholar
  50. 50.
    Xie ZL, Feng ML, Tan B, Huang XY (2012) CrystEngComm 14:4894Google Scholar
  51. 51.
    Dhakshinamoorthy A, Asiri AM, Alvaro M, Garcia H (2017) Green Chem 20:86Google Scholar
  52. 52.
    Luo QX, An BW, Ji M, Park SE, Li YQ (2015) J Porous Mater 22:247Google Scholar
  53. 53.
    Jie X, Chau J, Obuskovic G, Sirkar KK (2015) Ind Eng Chem Res 54:10401Google Scholar
  54. 54.
    Hosseini SH, Tavakolizadeh M, Zohreh N, Soleyman R (2018) Appl Organomet Chem 32:3953Google Scholar
  55. 55.
    Sun S, Lu D, Huang Q, Liu Q, Yao Y, Shi Y (2018) J Colloid Interface Sci 53:42Google Scholar
  56. 56.
    Nierengarten I, Guerra S, Holler M, Nierengarten JF, Deschenaux R (2012) Chem Commun 48:8072Google Scholar
  57. 57.
    Dong S, Zheng B, Yao Y, Han C, Yuan J, Antonietti M, Huang F (2013) Adv Mater 25:6864Google Scholar
  58. 58.
    Ma J, Shi F, Tian D, Li H (2016) Chemistry 22:13805Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Petrochemical EngineeringShenyang University of TechnologyLiaoyangPeople’s Republic of China
  2. 2.International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations