Design and Preparation of Hallow Mesoporous Silica Spheres Include CuO and Its Catalytic Performance for Synthesis of 1,2,3-Triazole Compounds via the Click Reaction in Water

  • Maryam Rajabzadeh
  • Reza KhalifehEmail author
  • Hossein EshghiEmail author
  • Mohsen Sorouri


Here, a novel nanostructured catalyst based on CuO included hallow mesoporous silica spheres (CuO–HMSS) was prepared for synthesis of 1,2,3-triazole compounds. The hallow silica spheres were synthesized via the hydrothermal procedure. The characterization of prepared catalyst was also performed applying several analysis techniques such as TEM and SEM, EDX, XRD, and ICP.

Graphical Abstract

CuO active sites in a hollow mesoporous silica shell are stably and efficiently attainable for conversion of precursors to triazole compounds.


Micro/nano structure hollow sphere Mesoporous silica Click reaction 



We gratefully acknowledge the support of this work by the Shiraz University of Technology and Ferdowsi University of Mashhad Research Council (Grant No: 3/39578).

Compliance with Ethical Standards

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Supplementary material

10562_2019_2666_MOESM1_ESM.docx (182 kb)
Supplementary material 1 (DOCX 181 KB)


  1. 1.
    Luque R, Balu AM, Campelo JM et al (2012) Catalytic applications of mesoporous silica-based materials. Catalysis 24:253–280CrossRefGoogle Scholar
  2. 2.
    Liang J, Liang Z, Zou R et al (2017) Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Adv Mater 29(30):1701139CrossRefGoogle Scholar
  3. 3.
    Slowing II, Trewyn BG, Giri S et al (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Shi J, Shen W et al (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew Chem 117(32):5213–5217CrossRefGoogle Scholar
  5. 5.
    Kim MH, Na HK, Kim YK et al (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5(5):3568–3576CrossRefGoogle Scholar
  6. 6.
    Ispas C, Sokolov I, Andreescu S (2009) Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393(2):543–554CrossRefGoogle Scholar
  7. 7.
    Sayari A, Hamoudi S, Yang Y (2005) Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17(1):212–216CrossRefGoogle Scholar
  8. 8.
    Franchi RS, Harlick PJ, Sayari A (2005) Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind Eng Chem Res 44(21):8007–8013CrossRefGoogle Scholar
  9. 9.
    Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875CrossRefGoogle Scholar
  10. 10.
    Wang X, Feng JI, Bai Y et al (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116(18):10983–11060CrossRefGoogle Scholar
  11. 11.
    Prieto G, Tüysüz H, Duyckaerts N et al (2016) Hollow nano-and microstructures as catalysts. Chem Rev 116(22):14056–14119CrossRefGoogle Scholar
  12. 12.
    Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26(20):3176–3205CrossRefGoogle Scholar
  13. 13.
    Ding S, Chen JS, Qi G et al (2010) Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J Am Chem Soc 133(1):21–23CrossRefGoogle Scholar
  14. 14.
    Salgueiriño-Maceira V, Spasova M, Farle M (2005) Water-stable magnetic silica–cobalt/cobalt oxide–silica multishell submicrometer spheres. Adv Funct Mater 15(6):1036–1040CrossRefGoogle Scholar
  15. 15.
    Liu J, Yang HQ, Kleitz F et al (2012) Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation. Adv Funct Mater 22(3):591–599CrossRefGoogle Scholar
  16. 16.
    Ge J, Zhang Q, Zhang T et al (2008) Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem 120(46):9056–9060CrossRefGoogle Scholar
  17. 17.
    Joo SH, Park JY, Tsung CK et al (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126CrossRefGoogle Scholar
  18. 18.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  19. 19.
    Guo X, Liu X, Xu B et al (2009) Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres. Colloids Surf A 345(1–3):141–146CrossRefGoogle Scholar
  20. 20.
    Sun X, Liu J, Li Y (2006) Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chemistry—Eur J 12(7):2039–2047CrossRefGoogle Scholar
  21. 21.
    Hu J, Chen M, Fang X et al (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491CrossRefGoogle Scholar
  22. 22.
    Titirici MM, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18(16):3808–3812CrossRefGoogle Scholar
  23. 23.
    Zhou HC, Wang Y (2012) Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 19(2):239–280CrossRefGoogle Scholar
  24. 24.
    Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1, 2, 3-triazoles as pharmacophores. Chemistry—Asian J 6(10):2696–2718Google Scholar
  25. 25.
    Sharghi H, Khalifeh R, Doroodmand MM (2009) Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent. Adv Synth Catal 351(1-2):207–218CrossRefGoogle Scholar
  26. 26.
    Sharghi H, Beyzavi MH, Safavi A et al (2009) Immobilization of porphyrinatocopper nanoparticles onto activated multi-walled carbon nanotubes and a study of its catalytic activity as an efficient heterogeneous catalyst for a click approach to the three-component synthesis of 1, 2, 3-triazoles in water. Adv Synth Catal 351(14–15):2391–2410CrossRefGoogle Scholar
  27. 27.
    Sharghi H, Hosseini-Sarvari M, Moeini F et al (2010) One-Pot, Three-Component Synthesis of 1-(2-Hydroxyethyl)-1H-1, 2, 3-triazole Derivatives by Copper-Catalyzed 1, 3-Dipolar Cycloaddition of 2-Azido Alcohols and Terminal Alkynes under Mild Conditions in Water. Helvetica Chimica Acta. 93(3):435–449CrossRefGoogle Scholar
  28. 28.
    Sharghi H, Khoshnood A, Doroodmand MM et al (2012) 1, 4-Dihydroxyanthraquinone-copper (II) nanoparticles immobilized on silica gel: a highly efficient, copper scavenger and recyclable heterogeneous nanocatalyst for a click approach to the three-component synthesis of 1, 2, 3-triazole derivatives in water. J Iran Chem Soc 9(2):231–250CrossRefGoogle Scholar
  29. 29.
    Alonso F, Moglie Y, Radivoy G et al (2009) Copper nanoparticles in click chemistry: an alternative catalytic system for the cycloaddition of terminal alkynes and azides. Tetrahedron Lett 50(20):2358–2362CrossRefGoogle Scholar
  30. 30.
    Alonso F, Moglie Y, Radivoy G (2015) Copper nanoparticles in click chemistry. Acc Chem Res 48(9):2516–2528CrossRefGoogle Scholar
  31. 31.
    Brotherton WS, Michaels HA, Simmons JT et al (2009) Apparent copper (II)-accelerated azide–alkyne cycloaddition. Org Lett 11(21):4954–4957CrossRefGoogle Scholar
  32. 32.
    Haldon E, Nicasio MC, Perez PJ (2015) Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Org Biomol Chem 13(37):9528–9550CrossRefGoogle Scholar
  33. 33.
    Pérez JM, Cano R, Ramón DJ (2014) Multicomponent azide–alkyne cycloaddition catalyzed by impregnated bimetallic nickel and copper on magnetite. RSC Adv 4(46):23943–23951CrossRefGoogle Scholar
  34. 34.
    Kim J, Park J, Park K (2010) CuO hollow nanostructures catalyze [3 + 2] cycloaddition of azides with terminal alkynes. Chem Commun 46(3):439–441CrossRefGoogle Scholar
  35. 35.
    Wang C, Yang F, Cao Y et al (2017) Cupric oxide nanowires on three-dimensional copper foam for application in click reaction. RSC Adv 7(16):9567–9572CrossRefGoogle Scholar
  36. 36.
    Jin T, Yan M, Minato T et al (2011) Nanoporous copper metal catalyst in click chemistry: nanoporosity-dependent activity without supports and bases. Adv Synth Catal 353(17):3095–3100CrossRefGoogle Scholar
  37. 37.
    Luz I, i Xamena FL, Corma A (2010) Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J Catal 276(1):134–140CrossRefGoogle Scholar
  38. 38.
    Mukherjee N, Ahammed S, Bhadra S et al (2013) Solvent-free one-pot synthesis of 1, 2, 3-triazole derivatives by the ‘Click’reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem 15(2):389–397CrossRefGoogle Scholar
  39. 39.
    Alonso F, Moglie Y, Radivoy G et al (2013) Alkenes as azido precursors for the one-pot synthesis of 1, 2, 3-triazoles catalyzed by copper nanoparticles on activated carbon. J Org Chem 78(10):5031–5037CrossRefGoogle Scholar
  40. 40.
    Alonso F, Moglie Y, Radivoy G et al (2011) Multicomponent click synthesis of 1, 2, 3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. J Org Chem 76(20):8394–8405CrossRefGoogle Scholar
  41. 41.
    Chassaing S, Sani Souna Sido A, Alix A et al (2008) “Click chemistry” in zeolites: copper (I) zeolites as new heterogeneous and ligand-free catalysts for the huisgen [3 + 2] cycloaddition. Chemistry—Eur J 14(22):6713–6721CrossRefGoogle Scholar
  42. 42.
    Gholinejad M, Jeddi N (2014) Copper nanoparticles supported on agarose as a bioorganic and degradable polymer for multicomponent click synthesis of 1, 2, 3-triazoles under low copper loading in water. ACS Sustain Chem Eng 2(12):2658–2665CrossRefGoogle Scholar
  43. 43.
    Wu L, Li L, Li B et al (2017) Selective conversion of coconut oil to fatty alcohols in methanol over a hydrothermally prepared Cu/SiO2 catalyst without extraneous hydrogen. Chem Commun 53(45):6152–6155CrossRefGoogle Scholar
  44. 44.
    Wu L, Li B, Zhao C (2018) Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites. ChemCatChem 10(5):1140–1147CrossRefGoogle Scholar
  45. 45.
    Huang X, Ma M, Miao S et al (2017) Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: reaction mechanism and structural evolution. Appl Catal A 531:79–88CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Li S, Wang Y et al (2017) Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chem Eng J 313:759–768CrossRefGoogle Scholar
  47. 47.
    Gong J, Yue H, Zhao Y et al (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. J Am Chem Soc 134(34):13922–13925CrossRefGoogle Scholar
  48. 48.
    Rajabzadeh M, Khalifeh R, Eshghi H et al (2018) A facile hydrothermal synthesis of novel hollow triple-shell CuNiFe2O4 nanospheres with robust catalytic performance in the Suzuki–Miyaura coupling reaction. J Catal 360:261–269CrossRefGoogle Scholar
  49. 49.
    Rajabzadeh M, Eshghi H, Khalifeh R et al (2018) 2-Hydroxyethylammonium formate ionic liquid grafted magnetic nanoparticle as a novel heterogeneous catalyst for the synthesis of substituted imidazoles. Appl Organomet Chem 32(2):e4052CrossRefGoogle Scholar
  50. 50.
    Rajabzadeh M, Eshghi H, Khalifeh R et al (2016) Generation of Cu nanoparticles on novel designed Fe3O4@SiO2/EP. EN. EG as reusable nanocatalyst for the reduction of nitro compounds. RSC Adv 6(23):19331–19340CrossRefGoogle Scholar
  51. 51.
    Lamei K, Eshghi H, Bakavoli M et al (2017) Carbon coated copper nanostructures as a green and ligand free nanocatalyst for Suzuki cross-coupling reaction. Catal Commun 92:40–45CrossRefGoogle Scholar
  52. 52.
    Lamei K, Eshghi H, Bakavoli M et al (2017) Magnetically recoverable gold nanorods as a novel catalyst for the facile reduction of nitroarenes under aqueous conditions. Catal Lett 147(2):491–501CrossRefGoogle Scholar
  53. 53.
    Sharghi H, Khalifeh R (2007) Eco-friendly synthesis of novel lariat ethers via Mannich reaction under solventless. Heterocycles 71(7):1601–1614CrossRefGoogle Scholar
  54. 54.
    Sharghi H, Khalifeh R (2008) Reaction on a solid surface—a simple, economical, and efficient Mannich reaction of azacrown ethers over graphite. Can J Chem 86(5):426–434CrossRefGoogle Scholar
  55. 55.
    Khalifeh R, Sharghi H, Rashidi Z (2013) Synthesis of [Zn (ΙΙ) BHPPDAH] as new heterogeneous catalyst without being immobilized on any support and applied for Mannich reaction. Heteroat Chem 24(5):372–383CrossRefGoogle Scholar
  56. 56.
    Sharghi H, Khalifeh R, Rashidi Z (2013) Synthesis of chromeno [3,4-bb] quinoline derivatives by heterogeneous [Cu (II) BHPPDAH] catalyst without being immobilized on any support under mild conditions using PEG 300 as green solvent. Mol Divers 17(4):721–730CrossRefGoogle Scholar
  57. 57.
    Khalifeh R, Ghamari M (2016) A multicomponent synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by heterogeneous and recyclable copper nanoparticles on charcoal. J Braz Chem Soc 27(4):759–768Google Scholar
  58. 58.
    Sharghi H, Khalifeh R, Mansouri SG et al (2011) Simple, efficient, and applicable route for synthesis of 2-aryl (heteroaryl)-benzimidazoles at room temperature using copper nanoparticles on activated carbon as a reusable heterogeneous catalyst. Catal Lett 141(12):1845–1850CrossRefGoogle Scholar
  59. 59.
    Sharghi H, Khalifeh R, Moeini F et al (2011) Mannich reaction of secondary amines, aldehydes and alkynes in water using Cu/C nanoparticles as a heterogeneous catalyst. J Iran Chem Soc 8(1):S89–S103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Department of ChemistryShiraz University of TechnologyShirazIran

Personalised recommendations