Covalently Copper(II) Porphyrin Cross-Linked Graphene Oxide: Preparation and Catalytic Activity
- 13 Downloads
Abstract
In this study, copper(II)-coordinated 5,10,15,20-tetrakis(aminophenyl)porphyrin (CuPPh) as a macrocyclic copper complex was covalently linked to the surface of graphene oxide (GO–CuPPh). This covalently cross-linked catalyst was characterized with various analysis such as FT-IR, SEM, TEM, EDS, ICP, TGA and UV–Vis. All analysis confirm the successful covalently immobilization of CuPPh on the GO. Then, the activity of catalyst has been tested for the preparation of propargylamine derivatives by the reaction of different aldehydes/ketones various amines and phenylacetylene via A3 and KA2 coupling reactions. The catalytic system indicated great catalytic activity in this reaction and the yields of the products were good to marvelous. The results of this work are hoped to aid the establishment of new class of heterogeneous catalysts as the high performance and low-cost candidates for industrial applications.
Graphical Abstract
Keywords
Heterogeneous catalysis Porphyrin Graphene oxide PropargylamineNotes
Acknowledgements
The authors are thankful to the Iran National Science Foundation and Ferdowsi University of Mashhad for financial support.
References
- 1.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669Google Scholar
- 2.Tombros N, Jozsa C, Popinciuc M, Jonkman HT, Van Wees BJ (2007) Nature 448:571Google Scholar
- 3.Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907Google Scholar
- 4.Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457Google Scholar
- 5.Zhang LY, Liu Z (2017) J Colloid Interface Sci 505:783–788Google Scholar
- 6.Li J, Tang X, Yi H, Yu Q, Gao F, Zhang R, Li C, Chu C (2017) Appl Surf Sci 412:37–44Google Scholar
- 7.Zhao J, Zhou J, Yuan M, You Z (2017) Catal Lett 147:1363–1370Google Scholar
- 8.Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) J Mater Chem 19:7098–7105Google Scholar
- 9.Zhao Q, Chen D, Li Y, Zhang G, Zhang F, Fan X (2013) Nanoscale 5:882–885Google Scholar
- 10.Zhao Q, Li Y, Liu R, Chen A, Zhang G, Zhang F, Fan X (2013) J Mater Chem A 1:15039–15045Google Scholar
- 11.Nia AS, Rana S, Döhler D, Noirfalise X, Belfiore A, Binder WH (2014) Chem Commun 50:15374–15377Google Scholar
- 12.Silvers SJ, Tulinsky A (1967) J Am Chem Soc 89:3331–3337Google Scholar
- 13.Rayati S, Ruzbahani SE, Nejabat F (2017) Macroheterocycles 10:62–67Google Scholar
- 14.Otte M, Kuijpers PF, Troeppner O, Ivanović-Burmazović I, Reek JN, de Bruin B (2014) Chem Eur J 20:4880–4884Google Scholar
- 15.Jiang Y-X, Su T-M, Qin Z-Z, Huang G (2015) RSC Adv 5:24788–24794Google Scholar
- 16.Zeng R, Chen G, Xiong C, Li G, Zheng Y, Chen J, Long Y, Chen S (2018) Appl Surf Sci 434:756–762Google Scholar
- 17.Zhou D, Cheng Q-Y, Cui Y, Wang T, Li X, Han B-H (2014) Carbon 66:592–598Google Scholar
- 18.Konishi M, Ohkuma H, Tsuno T, Oki T, VanDuyne GD, Clardy J (1990) J Am Chem Soc 112:3715–3716Google Scholar
- 19.Jenmalm A, Berts W, Li Y-L, Luthman K, Csoeregh I, Hacksell U (1994) J Org Chem 59:1139–1148Google Scholar
- 20.Naota T, Takaya H, Murahashi S-I (1998) Chem Rev 98:2599–2660Google Scholar
- 21.Yan W, Wang R, Xu Z, Xu J, Lin L, Shen Z, Zhou Y (2006) J Mol Catal A Chem 255:81–85Google Scholar
- 22.Wei C, Li C-J (2003) J Am Chem Soc 125:9584–9585Google Scholar
- 23.Shi L, Tu Y-Q, Wang M, Zhang F-M, Fan C-A (2004) Org Lett 6:1001–1003Google Scholar
- 24.Fischer C, Carreira EM (2001) Org Lett 3:4319–4321Google Scholar
- 25.Pin-Hua L, Lei W (2005) Chin J Chem 23:1076–1080Google Scholar
- 26.Maleki B, Nasiri N, Tayebee R, Khojastehnezhad A, Akhlaghi HA (2016) RSC Adv 6:79128–79134Google Scholar
- 27.Eshghi H, Khojastehnezhad A, Moeinpour F, Rezaeian S, Bakavoli M, Teymouri M, Rostami A, Haghbeen K (2015) Tetrahedron 71:436–444Google Scholar
- 28.Maleki B, Sheikh E, Seresht ER, Eshghi H, Ashrafi SS, Khojastehnezhad A, Veisi H (2016) Org Prep Proc Int 48:37–44Google Scholar
- 29.Javid A, Khojastehnezhad A, Heravi M, Bamoharram FF (2012) Inorg Nano-Met Chem 42:14–17Google Scholar
- 30.Maleki B, Eshghi H, Barghamadi M, Nasiri N, Khojastehnezhad A, Ashrafi SS, Pourshiani O (2016) Res Chem Intermed 42:3071–3093Google Scholar
- 31.Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339–1339Google Scholar
- 32.Bookser BC, Bruice TC (1991) J Am Chem Soc 113:4208–4218Google Scholar
- 33.Fareghi-Alamdari R, Golestanzadeh M, Bagheri O (2016) RSC Adv 6:108755–108767Google Scholar
- 34.Krishna MBM, Venkatramaiah N, Venkatesan R, Rao DN (2012) J Mater Chem 22:3059–3068Google Scholar
- 35.Wang H-X, Zhou K-G, Xie Y-L, Zeng J, Chai N-N, Li J, Zhang H-L (2011) Chem Commun 47:5747–5749Google Scholar
- 36.Jiang L, Cui L, He X (2015) J Solid State Electrochem 19:497–506Google Scholar
- 37.Kumar NA, Gaddam RR, Suresh M, Varanasi SR, Yang D, Bhatia SK, Zhao X (2017) J Mater Chem 5:13204–13211Google Scholar
- 38.Cui P, Lee J, Hwang E, Lee H (2011) Chem Commun 47:12370–12372Google Scholar
- 39.Şinoforoğlu M, Gür B, Arık M, Onganer Y, Meral K (2013) Rsc Adv 3:11832–11838Google Scholar
- 40.Chen M, Zhang Z, Li L, Liu Y, Wang W, Gao J (2014) RSC Adv 4:30914–30922Google Scholar
- 41.Peng S, Fan X, Li S, Zhang J (2013) J Chil Chem Soc 58:2213–2217Google Scholar
- 42.Pinto VHA, Rebouças JS, Ucoski GM, de Faria EH, Ferreira BF, San Gil RAS, Nakagaki S (2016) Appl Catal A Gen 526:9–20Google Scholar
- 43.Feiz A, Bazgir A (2016) Catal Commun 73:88–92Google Scholar
- 44.Kumari S, Shekhar A, Pathak DD (2016) RSC Adv 6:15340–15344Google Scholar
- 45.Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Catal Sci Technol 4:4001–4009Google Scholar
- 46.Zarei Z, Akhlaghinia B (2016) RSC Adv 6:106473–106484Google Scholar
- 47.Albaladejo MJ, Alonso F, Moglie Y, Yus M (2012) Eur J Org Chem 2012:3093–3104Google Scholar