Advertisement

Catalysis Letters

, Volume 149, Issue 3, pp 823–830 | Cite as

Hydrodechlorination of p-Chlorophenol on Pd-Coated Fe3O4@polypyrrole Catalyst with Ammonia Borane as Hydrogen Donor

  • Xuefeng WeiEmail author
  • Xiaoyang Wan
  • Juan Miao
  • Ruichang Zhang
  • Jun Zhang
  • Qingshan Jason Niu
Article
  • 32 Downloads

Abstract

Ammonia borane (AB) (hydrogen donor), was used for the hydrodechlorination of p-chlorophenol on Fe3O4@PPY@Pd at room temperature and pressure. Fe3O4@PPY@Pd was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The high-performance liquid chromatography and carbon balance results showed that p-chlorophenol was efficiently and quantitatively transformed into phenol. At the AB and catalyst contents of 2.5 mmol and 60 mg, respectively, the dechlorination of p-chlorophenol (100 mg/L) followed pseudo-first-order kinetics (rate constant = 0.023 min−1), and removal efficiency up to 92.5% was obtained in 120 min. The apparent activation energy was 31.6 kJ/mol. The Fe3O4@PPY@Pd composite catalyst could be reused without a significant loss in activity. This confirms the good stability of the catalyst. Here, a reductive approach for the dechlorination of organic compounds in water is provided. It is also useful for the fabrication of Pd-based nanocatalysts with easy accessibility, superior activity, and convenient recovery.

Graphical Abstract

Keywords

Hydrodechlorination Chlorophenol Ammonia borane Polypyrrole Pd nanoparticles Fe3O4 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (21403058, 21576073, and 41601520), the Scientific and Technological Project in Henan Province of China (172102310673), and Research Foundation for the Young Core Instructor Program of Henan Province, China (2016GGJS-058).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2664_MOESM1_ESM.doc (3.1 mb)
Supplementary material 1 (DOC 3133 KB)

References

  1. 1.
    Gupta VK, Ali I, Saini VK (2004) Environ Sci Technol 38:4012–4018CrossRefGoogle Scholar
  2. 2.
    Alonso MB, Maruya KA, Dodder NG et al (2017) Environ Sci Technol 51:1176–1185CrossRefGoogle Scholar
  3. 3.
    Li Z, Matoska SJ, Rohrer H (2011) Environ Prog Sustain 30(3):416–423CrossRefGoogle Scholar
  4. 4.
    Chaplin BP, Reinhard M, Schneider WF et al (2012) Environ Sci Technol 46:3655–3670CrossRefGoogle Scholar
  5. 5.
    Song JX, Zhao Q, Guo J et al (2019) Sci Total Environ 651:1368–1376CrossRefGoogle Scholar
  6. 6.
    Garcia-Cruz NU, Vigueras G, Pacheco-Lopez NA et al (2018) Biochem Eng J 139:117–122CrossRefGoogle Scholar
  7. 7.
    Zhu BZ, Shen C, Gao HY et al (2017) J Environl Sci 62:68–83CrossRefGoogle Scholar
  8. 8.
    Gao HY, Mao L, Li F et al (2017) Environ Sci Technol 51:2934–2943CrossRefGoogle Scholar
  9. 9.
    Yazdanbakhsh A, Eslami A, Moussavi G et al (2017) Chemosphere 191:156–165CrossRefGoogle Scholar
  10. 10.
    Zhong NB, Chen M, Luo Y et al (2019) Chem Eng J 355:731–739CrossRefGoogle Scholar
  11. 11.
    Vijayan P, Mahendiran C, Suresh C (2009) Catal Today 141:220–224CrossRefGoogle Scholar
  12. 12.
    He ZQ, Lin KJ, Sun JJ et al (2013) Electrochim Acta 109:502–511CrossRefGoogle Scholar
  13. 13.
    Sun ZR, Wei XF, Han YB et al (2013) J Hazard Mater 244:287–294CrossRefGoogle Scholar
  14. 14.
    Sun ZR, Shen HT, Wei XF et al (2014) Chem Eng J 241:433–442CrossRefGoogle Scholar
  15. 15.
    Sun ZR, Wei XF, Shen HT et al (2014) Electrochim Acta 129:433–440CrossRefGoogle Scholar
  16. 16.
    Jiang GM, Lan MN, Zhang ZY et al (2017) Environ Sci Technol 51:7599–7605CrossRefGoogle Scholar
  17. 17.
    Liu MY, Huang RL, Che MD et al (2018) Cheml Eng J 52:716–721CrossRefGoogle Scholar
  18. 18.
    Zhang SY, Zhang C, Liu MY et al (2018) Nanoscale Res Lett 13:219CrossRefGoogle Scholar
  19. 19.
    Zhou Y, Kuang Y, Li WY et al (2013) Chem Eng J 223:68–75CrossRefGoogle Scholar
  20. 20.
    Andersin J, Parkkinen P, Honkala K (2012) J Catal 290:118–125CrossRefGoogle Scholar
  21. 21.
    Cheng IF, Quintus F, Korte N (1997) Environ Sci Technol 31:1074–1078CrossRefGoogle Scholar
  22. 22.
    Ma XX, Liu SJ, Liu Y,etal (2016) Sci Rep 6:25068CrossRefGoogle Scholar
  23. 23.
    Anusiewicz I, Janiak T, Okal J (2010) Catal Commun 11:797–801CrossRefGoogle Scholar
  24. 24.
    Fan YH, Zhang LR, Zhang GL et al (2015) J Chin Chem Soc 62:117–124CrossRefGoogle Scholar
  25. 25.
    Ukisu Y (2012) React Kinet Mech Catal 107:277–284CrossRefGoogle Scholar
  26. 26.
    Ukisu Y (2017) Chemosphere 179:179–184CrossRefGoogle Scholar
  27. 27.
    Haham H, Grinblat J, Sougrati MT et al (2015) J Magn Magn Mater 389:82–89CrossRefGoogle Scholar
  28. 28.
    Abazari R, Heshmatpour F, Balalaie S (2013) ACS Catal 3:139–149CrossRefGoogle Scholar
  29. 29.
    Yang SL, Cao CY, Sun YB,etal (2015) Angew Chem Int Ed 54:2661–2664CrossRefGoogle Scholar
  30. 30.
    Hu WT, Liu BC, Wang Q (2013) Chem Commun 49:7596–7598CrossRefGoogle Scholar
  31. 31.
    Wang Y, Shen YH, Xie AJ et al (2010) J Phys Chem C 114:4297–4301CrossRefGoogle Scholar
  32. 32.
    Tuo Y, Liu GF, Dong B et al (2015) Sci Rep 5:13515CrossRefGoogle Scholar
  33. 33.
    Davie MG, Cheng H, Hopkins GD et al (2008) Environ Sci Technol 42:8908–8915CrossRefGoogle Scholar
  34. 34.
    Schüth C, Kummer NA, Weidenthaler C et al (2004) Appl Catal B 52:197–203CrossRefGoogle Scholar
  35. 35.
    Zheng MM, Bao JG, Liao P et al (2012) Chemosphere 87:1097–1104CrossRefGoogle Scholar
  36. 36.
    Crock CA, Sengur-Tasdemir R, Koyuncu I et al (2017) Sep Purif Technol 179:265–273CrossRefGoogle Scholar
  37. 37.
    Xiong J, Ma Y, Yang W et al (2018) J Hazard Mater 355:89–95CrossRefGoogle Scholar
  38. 38.
    Xie SW, Yuan SH, Liao P et al (2015) Water Res 86:74–81CrossRefGoogle Scholar
  39. 39.
    Kopinke FD, Mackenzie K, Koehler R et al (2004) Appl Catal A 271:119–128CrossRefGoogle Scholar
  40. 40.
    Fakioğlu E, Yürüm Y, Veziroğlu TN (2004) Int J Hydrogen Energy 29:1371–1376CrossRefGoogle Scholar
  41. 41.
    Umegaki T, Yan JM, Zhang XB et al (2009) Int J Hydrogen Energy 34:2303–2311CrossRefGoogle Scholar
  42. 42.
    Zahmakiran M, Özkar S (2013) Top Catal 56:1171–1183CrossRefGoogle Scholar
  43. 43.
    Bulut A, Yurderi M, Ertas IE et al (2016) Appl Catal B 180:121–129CrossRefGoogle Scholar
  44. 44.
    Sanyal U, Demirci UB, Jagirdar BR et al (2011) ChemSusChem 4:1731–1739CrossRefGoogle Scholar
  45. 45.
    Yan JM, Zhang XB, Shioyama H et al (2010) J Power Sources 195:1091–1094CrossRefGoogle Scholar
  46. 46.
    Yan JM, Zhang XB, Han S et al (2008) Angew Chem Int Ed 47:2287–2289CrossRefGoogle Scholar
  47. 47.
    Wang HL, Yan JM, Wang ZL et al (2012) Int J Hydrogen Energy 37:10229–10235CrossRefGoogle Scholar
  48. 48.
    Zhong WD, Tian XK, Yang C (2016) Int J Hydrogen Energy 41:15225–15235CrossRefGoogle Scholar
  49. 49.
    Xu CC, Liu R, Chen LY et al (2016) J Environ Sci 48:92–101CrossRefGoogle Scholar
  50. 50.
    Yao TJ, Cui TY, Wang H et al (2014) Nanoscale 6:7666–7674CrossRefGoogle Scholar
  51. 51.
    Mourato A, Correia JP, Siegenthaler H et al (2008) Electrochim Acta 53:664–672CrossRefGoogle Scholar
  52. 52.
    Sun ZR, Wei XF, Hu X et al (2012) Colloids Surf A 414:314–319CrossRefGoogle Scholar
  53. 53.
    Sun ZR, Wang K, Wei XF et al (2012) Int J Hydrogen Energy 37:17862–17869CrossRefGoogle Scholar
  54. 54.
    Zhang H, Liu Y, Wu J et al (2016) J Colloid Interface Sci 476:214–221CrossRefGoogle Scholar
  55. 55.
    Saffari J, Mir N, Ghanbari D et al (2015) J Mater Sci 26:9591–9599Google Scholar
  56. 56.
    Kim K, Qiu P, Cui M et al (2016) Chem Eng J 284:1165–1173CrossRefGoogle Scholar
  57. 57.
    Du JK, Bao JG, Tong M et al (2013) Environ Eng Sci 30:350–356CrossRefGoogle Scholar
  58. 58.
    Lim VWL, Kang ET, Neoh KG (2001) Synth Met 123:107–115CrossRefGoogle Scholar
  59. 59.
    Li P, Jiang EY, Bai HL (2011) J Phys D Appl Phys 44:075003CrossRefGoogle Scholar
  60. 60.
    Malitesta C, Losito I, Sabbatini L et al (1995) J Electron Spectrosc 76:629–634CrossRefGoogle Scholar
  61. 61.
    Liu YS, Zhang W, Li XL et al (2015) New J Chem 39:6474–6481CrossRefGoogle Scholar
  62. 62.
    Liu YS, Li XL, Le XD et al (2015) New J Chem 39:4519–4525CrossRefGoogle Scholar
  63. 63.
    Jadbabaei N, Ye T, Shuai DM et al (2017) Appl Catal B 205:576–586CrossRefGoogle Scholar
  64. 64.
    Yoneda T (2018) Chem Lett 47:945–948CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical Engineering & PharmaceuticsHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations