Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 544–551 | Cite as

Gold Nanoparticles Stabilized by 1,2,3-Triazolyl Dendronized Polymers as Highly Efficient Nanoreactors for the Reduction of 4-Nitrophenol

  • Xiong Liu
  • Shengdong Mu
  • Yanru Long
  • Guirong Qiu
  • Qiangjun Ling
  • Haibin GuEmail author
  • Wei LinEmail author
Article
  • 24 Downloads

Abstract

Dendronized polymer (DP)-encapsulated gold nanoparticles (AuNPs) are well prepared and characterized, and their catalytic performance is also evaluated. First, the nanoreactors self-assembled from water-soluble 1,2,3-triazolyl DP 1 are employed as templates to generate DP-encapsulated AuNPs. The resulting AuNPs are characterized through UV–visible spectroscopy and high-resolution transmission electron microscopy. The catalytic activity of DP-encapsulated AuNPs was estimated by the conversion of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in water and an extremely catalytic activity is found for the reduction reaction with remarkable TONs up to 2000 and TOFs up to 7350 h− 1. This catalytic performance is comparable to these micellar AuNPs encapsulated by the known analogues including the trz-containing triethylene glycol (TEG) and polyethylene glycol (PEG) dendrimers, which may be because that DPs 1 has the similar behavior in solution as the dendrimer analogues.

Graphical Abstract

Keywords

Nanoreactor Dendronized polymer Catalysis 4-Nitrophenol reduction Gold nanoparticles 

Notes

Acknowledgements

Thanks for the UV–vis analysis from Wang Zhonghui (College of Light Industry, Textile and Food Engineering, Sichuan University) and the TEM analysis from ceshigo (http://www.ceshigo.com). This work was financially supported by the “Science & Technology Department of Sichuan Province” (No. 2018HH0038) and “ZSCHIMMER & SCHWARZ GmbH & Co. KG”.

References

  1. 1.
    Liu YK, Jiang GH, Li L, Chen H, Huang Q, Jiang TT (2015) J Mater Sci 50:8120Google Scholar
  2. 2.
    Guo WS, Pleixats R, Shafir A (2015) Chem Asian J 10:2437Google Scholar
  3. 3.
    Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Adv Mater 22:1805Google Scholar
  4. 4.
    Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973Google Scholar
  5. 5.
    Mohanty A, Garg N, Jin RC (2010) Angew Chem Int Ed 49:4962Google Scholar
  6. 6.
    Zeng T, Zhang XL, Guo YY, Niu HY, Cai YQ (2014) J Mater Chem A 2:14807Google Scholar
  7. 7.
    Xia YN, Li WY, Cobley CM, Chen JY, Xia XH, Zhang Q, Yang MX, Cho EC, Brown PK (2011) Acc Chem Res 44:914Google Scholar
  8. 8.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Chem Soc Rev 37:1783Google Scholar
  9. 9.
    Daniel MC, Astruc D (2014) Chem Rev 104:293Google Scholar
  10. 10.
    Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Chem Soc Rev 35:1084Google Scholar
  11. 11.
    Liu Y, Fan Y, Yuan Y, Chen Y, Cheng F, Jiang SC (2012) J Mater Chem 22:21173Google Scholar
  12. 12.
    Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908Google Scholar
  13. 13.
    Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Appl Catal B 166:518Google Scholar
  14. 14.
    Song ZQ, Li WY, Niu FS, Xu YH, Niu L, Yang WR, Wang Y, Liu JQ (2017) J Mater Chem A 5:230Google Scholar
  15. 15.
    Biondi I, Laurenczy G, Dyson P (2011) J Inorg Chem 50:8038Google Scholar
  16. 16.
    Chen L, Cao WJ, Quinlan PJ, Berry RM, Tam KC (2015) ACS Sustain Chem Eng 3:978Google Scholar
  17. 17.
    Kuroda K, Ishida T, Haruta M (2009) J Mol Catal A 298:7Google Scholar
  18. 18.
    Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618Google Scholar
  19. 19.
    Alcaide B, Almendros P, Alonso JM (2011) Org Biomol Chem 9:4405Google Scholar
  20. 20.
    Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099Google Scholar
  21. 21.
    Zhang ZB, Liu C, Kinder RE, Han XQ, Qian H, Widenhoefer RA (2016) J Am Chem Soc 128:9066Google Scholar
  22. 22.
    Dai Y, Yu P, Zhang XJ, Zhuo RX (2016) J Catal 337:65Google Scholar
  23. 23.
    Wang LG, Yang QH, Cui YS, Gao DW, Kang JX, Sun HT, Zhu LL, Chen SF (2017) N J Chem 41:8399Google Scholar
  24. 24.
    Dai Y, Li Y, Wang SP (2015) J Catal 329:425Google Scholar
  25. 25.
    Zeng J, Zhang Q, Chen JY, Xia YN (2010) Nano Lett 10:30Google Scholar
  26. 26.
    Dreaden EC, Alkilany AM, Huang XH, Murphy CJ, El-Sayed MA (2012) Chem Soc Rev 41:2740Google Scholar
  27. 27.
    Mahmoud MA, Saira F, El-Sayed MA (2010) Nano Lett 10:3764Google Scholar
  28. 28.
    Polavarapu L, Xu QH (2008) Langmuir 24:10608Google Scholar
  29. 29.
    Shan J, Tenhu H (2007) Chem Commun 44:4580Google Scholar
  30. 30.
    Rocha M, Costa P, Sousa CAD, Pereira C, Rodriguez-Borges JE, Freire C (2018) J Catal 316:143Google Scholar
  31. 31.
    Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181Google Scholar
  32. 32.
    Niu YH, Crooks RM (2003) C R Chim 6:1049Google Scholar
  33. 33.
    Li N, Echeverria M, Moya S, Ruiz J, Astruc D (2014) Inorg Chem 53:6954Google Scholar
  34. 34.
    Liu X, Gregurec D, Irigoyen J, Martinez A, Moya S, Ciganda R, Hermange P, Ruiz J, Astruc D (2016) Nat Commun 7:13152Google Scholar
  35. 35.
    Hu DM, Huang YP, Liu H, Wang H, Wang SG, Shen MW, Zhu MF, Shi X (2014) J Mater Chem A 2:2323Google Scholar
  36. 36.
    Esumi K, Miyamoto K, Yoshimura T (2002) J Colloid Interface Sci 254:402Google Scholar
  37. 37.
    Hayakawa K, Yoshimura T, Esumi K (2003) Langmuir 19:5517Google Scholar
  38. 38.
    Frauenrath H (2005) Prog Polym Sci 30:325Google Scholar
  39. 39.
    Liang CO, Helms B, Hawker CJ, Frechet JMJ (2003) Chem Commun 20:2524Google Scholar
  40. 40.
    Liu FF, Liu X, Astruc D, Gu HB (2019) J Colloid Interface Sci 533:161Google Scholar
  41. 41.
    Liu X, Mu SD, Qiu GR, Long YR, Ling QJ, He JL, Gu HB (2018) Polymer 146:275Google Scholar
  42. 42.
    Astruc D, Liang L, Rapakousiou A, Ruiz J (2012) Acc Chem Res 45:630Google Scholar
  43. 43.
    Zhao P, Li N, Salmon L, Liu N, Ruiz J, Astruc D (2013) Chem Commun 49:3218Google Scholar
  44. 44.
    Li N, Zhao P, Liu N, Echeverria M, Moya S, Salmon L, Ruiz J, Astruc D (2014) Chem Eur J 20:8363Google Scholar
  45. 45.
    Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Angew Chem Int Ed 55:3091Google Scholar
  46. 46.
    Huang DS, Zhao PX, Astruc D (2014) Coord Chem Rev 272:145Google Scholar
  47. 47.
    Wang CL, Ikhlef D, Kahlal S, Saillard JY, Astruc D (2016) Coord Chem Rev 316:1Google Scholar
  48. 48.
    Deraedt C, Pinaud N, Astruc D (2014) J Am Chem Soc 136:12092Google Scholar
  49. 49.
    Ciganda R, Li N, Deraedt C, Gatard S, Zhao P, Salmon L, Hernández R, Ruiz J, Astruc D (2014) Chem Commun 50:10126Google Scholar
  50. 50.
    Huang T, Meng F, Qi LM (2009) J Phys Chem C 113:13636Google Scholar
  51. 51.
    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814Google Scholar
  52. 52.
    Xu W, Kong JS, Yeh YTE, Chen P (2008) Nat Mater 7:992Google Scholar
  53. 53.
    Wang CL, Salmon L, Li Q, Igartua ME, Moya S, Ciganda R, Ruiz J, Astruc D (2016) Inorg Chem 55:6776Google Scholar
  54. 54.
    Van Bokhoven JA, Miller JT (2007) J Phys Chem C 111:9245Google Scholar
  55. 55.
    Zhang GR, Zhao D, Feng YY, Zhang BS, Su DS, Liu G, Xu BQ (2012) ACS Nano 6:2226Google Scholar
  56. 56.
    Ye Y, Jin M, Wan D (2015) J Mater Chem A 3:13519Google Scholar
  57. 57.
    Nemanashi M, Meijboom R (2013) J Colloid Interface Sci 389:260Google Scholar
  58. 58.
    Nemanashi M, Meijboom R (2016) Catal Commun 83:53Google Scholar
  59. 59.
    Bingwa N, Meijboom R (2015) J Mol Catal A 396:1Google Scholar
  60. 60.
    Kannan A, Rajakumar P (2015) RSC Adv 5:46908Google Scholar
  61. 61.
    Su S, Yue G, Huang D, Yang G, Lai X, Zhao P (2015) RSC Adv 5:44018Google Scholar
  62. 62.
    Huang D, Yang G, Feng X, Lai X, Zhao P (2015) N J Chem 39:4685Google Scholar
  63. 63.
    Li N, Zhao P, Igartua ME, Rapakousiou A, Salmon L, Moya S, Ruiz J, Astruc D (2014) Inorg Chem 53:11802Google Scholar
  64. 64.
    Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Chem Commun 50:14194Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan UniversityChengduChina
  2. 2.National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduChina

Personalised recommendations