Catalysis Letters

, Volume 149, Issue 3, pp 876–881 | Cite as

Photo-Induced Phase Transition of CdZnS Based Nanocomposite at Room Temperature Under Solar Irradiation

  • Duygu Akyüz
  • Atıf KocaEmail author


Photo-induced phase transition (PIPT) of CdZnS based nanocomposites that was performed at the room temperature under the solar light illumination is reported here for the first time. CdZnS particles were decorated on reduced graphene oxide (RGO) with a solvothermal process and consequently RGO-CdZnS-5%Pt nanocomposites (PC) have been synthesized as zinc blende (cubic) phase of CdZnS. Zinc blende structure (cubic) of CdZnS components of PC was turned to wurtzite (hexagonal) crystal structure with PIPT during the photocatalytic hydrogen evolution reaction. The band gap of the photocatalyst decreased from 2.42 to 2.19 eV and the hydrogen evolution rate increased from 37.3 to 184.0 µ mol h−1 due to the PIPT process.

Graphical Abstract


Photo-induced phase transition Metal chalcogenides Hydrogen production Photocatalyst 



This work was supported by Marmara University BAPKO (Project No. FEN-C-DRP-131217-0675) and The Scientific and Technological Research Council of Turkey, TUBITAK (Project No. 116M567).

Supplementary material

10562_2019_2661_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)


  1. 1.
    Agopcan B, Akyüz D, Karaca F et al (2018) A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43:8206–8220CrossRefGoogle Scholar
  2. 2.
    Akyüz D, Koca A (2018) Photocatalytic hydrogen production with reduced graphene oxide (RGO)-CdZnS nano-composites synthesized by solvothermal decomposition of dimethyl sulfoxide as the sulfur source. J Photochem Photobiol A 364:625–634CrossRefGoogle Scholar
  3. 3.
    Ben-Shahar Y, Scotognella F, Kriegel I et al (2016) Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat Commun 7:ncomms10413CrossRefGoogle Scholar
  4. 4.
    Biswas S, Kar S, Santra S et al (2009) Solvothermal synthesis of high-aspect ratio alloy semiconductor nanowires: Cd1–x ZnxS, a case study. J Phys Chem C 113:3617–3624CrossRefGoogle Scholar
  5. 5.
    Ca N, Bau N, Phan T et al (2017) Temperature-dependent photoluminescent and Raman studies on type-II CdS/ZnSe core/shell and CdS/CdZnS-ZnCdSe/ZnSe core/intermediate/shell nanoparticles. J Alloys Compd 697:401–408CrossRefGoogle Scholar
  6. 6.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Progr Solid State Chem 32:33–177CrossRefGoogle Scholar
  7. 7.
    Chen F, Zhou R, Yang L et al (2008) One-step fabrication of CdS nanorod arrays via solution chemistry. J Phys Chem C 112:13457–13462CrossRefGoogle Scholar
  8. 8.
    Chica B, Wu CH, Liu Y et al (2017) Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod-NiFe hydrogenase assemblies. Energy Environ Sci 10:2245–2255CrossRefGoogle Scholar
  9. 9.
    Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297CrossRefGoogle Scholar
  10. 10.
    Devi LG, Kavitha R (2016) A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622CrossRefGoogle Scholar
  11. 11.
    Dzhagan VM, Stroyuk OL, Rayevska OE et al (2010) A spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped CdxZn1–xS nanoparticles. J Colloid Interface Sci 345:515–523CrossRefGoogle Scholar
  12. 12.
    Gouadec G, Colomban P (2007) Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progr Cryst Growth Character Mater 53:1–56CrossRefGoogle Scholar
  13. 13.
    Guo S, Deng Z, Li M et al (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed 55:1830–1834CrossRefGoogle Scholar
  14. 14.
    Head DL, Mccarty CG (1973) The thermal decomposition of DMSO. Tetrahedron Lett 14:1405–1408CrossRefGoogle Scholar
  15. 15.
    Hu Y, Gao X, Yu L et al (2013) Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem 125:5746–5749CrossRefGoogle Scholar
  16. 16.
    Kar S, Chaudhuri S (2006) Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. J Phys Chem B 110:4542–4547CrossRefGoogle Scholar
  17. 17.
    Kato A, Nishigaki M, Mamedov N et al (2003) Optical properties and photo-induced memory effect related with structural phase transition in TlGaS2. J Phys Chem Solids 64:1713–1716CrossRefGoogle Scholar
  18. 18.
    Ke D, Liu S, Dai K et al (2009) CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J Phys Chem C 113:16021–16026CrossRefGoogle Scholar
  19. 19.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  20. 20.
    Li F, Bi W, Kong T et al (2009) Effect of sulfur sources on the crystal structure, morphology and luminescence of CdS nanocrystals prepared by a solvothermal method. J Alloys Compd 479:707–710CrossRefGoogle Scholar
  21. 21.
    Li Q, Meng H, Yu J et al (2014) Enhanced photocatalytic hydrogen-production performance of graphene–ZnxCd1–xS composites by using an organic S source. Chemistry A 20:1176–1185Google Scholar
  22. 22.
    Lingampalli S, Gautam UK, Rao C (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Cd1–xZnxS and ZnO/Pt/CdS1–xSex hybrid nanostructures. Energy Environ Sci 6:3589–3594CrossRefGoogle Scholar
  23. 23.
    Ran JR, Gao GP, Li FT et al (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907CrossRefGoogle Scholar
  24. 24.
    Saha S, Sain S, Meikap A et al (2015) Microstructure characterization and electrical transport of nanocrystalline CdZnS quantum dots. Physica E 66:59–66CrossRefGoogle Scholar
  25. 25.
    Sain S, Pradhan S (2011) Mechanochemical solid state synthesis of (Cd0. 8Zn0. 2) S quantum dots: microstructure and optical characterizations. J Alloys Compd 509:4176–4184CrossRefGoogle Scholar
  26. 26.
    Shi J, Cui HN, Liang Z et al (2011) The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1–xS. Energy Environ Sci 4:466–470CrossRefGoogle Scholar
  27. 27.
    Takanabe K, Domen K (2011) Toward visible light response: overall water splitting using heterogeneous photocatalysts. Green 1:313–322CrossRefGoogle Scholar
  28. 28.
    Thakur S, Kshetri T, Kim NH et al (2017) Sunlight-driven sustainable production of hydrogen peroxide using a CdS–graphene hybrid photocatalyst. J Catal 345:78–86CrossRefGoogle Scholar
  29. 29.
    Tian B, Tian BN, Smith B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 9:1397CrossRefGoogle Scholar
  30. 30.
    Vigil O, Riech I, Garcia-Rocha M et al (1997) Characterization of defect levels in chemically deposited CdS films in the cubic-to-hexagonal phase transition. J Vac Sci Technol A 15:2282–2286CrossRefGoogle Scholar
  31. 31.
    Wang W, Germanenko I, El-Shall MS (2002) Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem Mater 14:3028–3033CrossRefGoogle Scholar
  32. 32.
    Weng B, Liu S, Zhang N et al (2014) A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D–1D nanocomposite photocatalyst. J Catal 309:146–155CrossRefGoogle Scholar
  33. 33.
    Won D-J, Wang C-H, Jang H-K et al (2001) Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties. Appl Phys A 73:595–600CrossRefGoogle Scholar
  34. 34.
    Wu B, Cheng H, Guha S et al (1993) Molecular beam epitaxial growth of CdZnS using elemental sources. Appl Phys Lett 63:2935–2937CrossRefGoogle Scholar
  35. 35.
    Wu JM, Liou LB (2011) Room temperature photo-induced phase transitions of VO2 nanodevices. J Mater Chem 21:5499–5504CrossRefGoogle Scholar
  36. 36.
    Wu X, Zhang Z, Meng F et al (2014) Core–shell-like Y2O3:[(Tb3+–Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion. Nanoscale 6:4745–4749CrossRefGoogle Scholar
  37. 37.
    Yuan X, Zhang W, Zhang P (2013) Hole-lattice coupling and photoinduced insulator-metal transition in VO2. Phys Rev B 88:035119CrossRefGoogle Scholar
  38. 38.
    Zelaya-Angel O, Alvarado-Gil J, Lozada-Morales R et al (1994) Band-gap shift in CdS semiconductor by photoacoustic spectroscopy: evidence of a cubic to hexagonal lattice transition. Appl Phys Lett 64:291–293CrossRefGoogle Scholar
  39. 39.
    Zhang J, Yu J, Jaroniec M et al (2012) Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12:4584–4589CrossRefGoogle Scholar
  40. 40.
    Zhang N, Yang M-Q, Tang Z-R et al (2013) CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation. J Catal 303:60–69CrossRefGoogle Scholar
  41. 41.
    Zhang W, Gao W, Zhang X et al (2017) Surface spintronics enhanced photo-catalytic hydrogen evolution: mechanisms, strategies, challenges and future. Appl Surf Sci 434:643–668Google Scholar
  42. 42.
    Ziabari AA, Ghodsi F (2013) Effects of the Cd: Zn: S molar ratio and heat treatment on the optical and photoluminescence properties of nanocrystalline CdZnS thin films. Mater Sci Semicond Process 16:1629–1636CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringMarmara UniversityGöztepeTurkey

Personalised recommendations