Catalysis Letters

, Volume 149, Issue 2, pp 638–643 | Cite as

Biocatalytic One-Pot Three-Component Synthesis of Indoloquinolizines with High Diastereoselectivity

  • Wei-Xun He
  • Xiu Xing
  • Zeng-Jie Yang
  • Yuan Yu
  • Na WangEmail author
  • Xiao-Qi YuEmail author


A facile and green method catalyzed by α-amylase has been developed for the synthesis of highly substituted indoloquinolizines using tryptamines, β-ketoesters and α,β-unsaturated aldehydes. The reaction afforded a variety of products in moderate to good yields and with high diastereoselectivity. The densely functionalized products were obtained in a single synthetic operation under mild conditions.

Graphical Abstract


α-Amylase from hog pancreas Biocatalysis Enzyme promiscuity Indoloquinolizines 


Supplementary material

10562_2019_2660_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1716 KB)


  1. 1.
    JoséCliment M, Corma A, Iborra S (2012) RSC Adv 2:16Google Scholar
  2. 2.
    Xu W, Gaviab D, Tang Y (2014) Nat Prod Rep 31:1474Google Scholar
  3. 3.
    Robertson L, Duffy S, Wang Y, Wang D, Avery V, Carroll A (2017) J Nat Prod 80:3211Google Scholar
  4. 4.
    Rallapalli S, Namjoshi O, Tiruveedhula V, Deschamps J, Cook J (2014)) J Org Chem 79:3776Google Scholar
  5. 5.
    Szántay C, Honty K (1994) Chem Heterocycl Compd 25:161Google Scholar
  6. 6.
    Raffa R, Beckett J, Brahmbhatt V, Ebinger T, Fabian C, Nixon J, Orlando S, Rana C, Tejani A, Tomazic R (2013) J Med Chem 56:4840Google Scholar
  7. 7.
    Luo S, Zificsak C, Hsung R (2003) Org Lett 5:4709Google Scholar
  8. 8.
    Frank W, Andrea N, Oliver M (2008) ChemBioChem 9:401Google Scholar
  9. 9.
    Michelle Y, Lily L (2013) Neuropharmacology 75:47Google Scholar
  10. 10.
    Zhang X, Liu J, Liu Y, Wang Y, Abozeid A, Yu Z, Tang Z (2018) J Nat Prod 81:335Google Scholar
  11. 11.
    Nakamura Y, Lshida Y, Kondo M, Shimada S (2018) Phytomedicine 43:120Google Scholar
  12. 12.
    Villa R, Wu Q, Kwon O (2012) Org Lett 14:4634Google Scholar
  13. 13.
    Deiters A, Pettersson M, Martin S (2006) J Org Chem 71:6547Google Scholar
  14. 14.
    Zhang W, Bah J, Wohlfarth A, Franzen J (2011) Chem Eur J 17:13814Google Scholar
  15. 15.
    Amat M, Esque A, Escolano C, Santos M, Molins E, Bosch J (2009) J Org Chem 74:1205Google Scholar
  16. 16.
    Fang H, Wu X, Nie L, Dai X, Chen J, Cao W, Zhao G (2010) Org Lett 12:5366Google Scholar
  17. 17.
    Gobe V, Guinchard X (2014) Org Lett 16:1924Google Scholar
  18. 18.
    Tan Y, Luan H, Lin H, Sun X, Yang X, Dong H, Lin G (2014) Chem Commun 50:10027Google Scholar
  19. 19.
    Hu S, Wang B, Zhang Y, Tang W, Fang M, Lu T, Du D (2015) Org Biomol Chem 13:4661Google Scholar
  20. 20.
    Franzen J, Fisher A (2009) Angew Chem Int Ed 48:787Google Scholar
  21. 21.
    Wu X, Dai X, Nie L, Fang H, Chen J, Ren Z, Cao W, Zhao G (2010) Chem Commun 46:2733Google Scholar
  22. 22.
    Sun J, Zhang L, Yan C (2013) Tetrahedron 69:5451Google Scholar
  23. 23.
    Rueping M, Volla CR (2011) RSC Adv 1:79Google Scholar
  24. 24.
    Suryavanshi P, Sridharan V, Menendez JC (2013) Chem Eur J 19:13207Google Scholar
  25. 25.
    Humble M, Berglund P (2011) Eur J Org Chem 19:3391Google Scholar
  26. 26.
    Bornscheuer U, Kazlauskas R (2004) Angew Chem Int Ed Engl 43:6032Google Scholar
  27. 27.
    Kazlauskas R (2005) Curr Opin Chem Biol 9:195Google Scholar
  28. 28.
    Sandoval B, Meichan A, Hyster T (2017) J Am Chem Soc 139:11313Google Scholar
  29. 29.
    Roiban G, Reetz M (2013) Angew Chem Int Ed 125:5549Google Scholar
  30. 30.
    Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Berglund P (2003) J Am Chem Soc 125:874Google Scholar
  31. 31.
    Li C, Feng X, Wang N, Zhou Y, Yu X (2008) Green Chem 10:616Google Scholar
  32. 32.
    Svedendahl M, Hult K, Berglund P (2005) J Am Chem Soc 127:17988Google Scholar
  33. 33.
    Torre O, Alfonso I, Gotor V (2004) Chem Commun 15:1724Google Scholar
  34. 34.
    Wang L, Xu M, Wu Q, Lv S, Lin F (2009) Tetrahedron 65:2531Google Scholar
  35. 35.
    Feng X, Li C, Wang N, Li K, Zhang W, Wang Z, Yu X (2009) Green Chem 11:1933Google Scholar
  36. 36.
    Hu W, Guan Z, Deng X, He Y (2012) Biochimie 94:656Google Scholar
  37. 37.
    Akai S, Tanimoto K, Kita Y (2004) Angew Chem 116:1431Google Scholar
  38. 38.
    Li K, He T, Li C, Feng X, Wang N, Yu X (2009) Green Chem 11:777Google Scholar
  39. 39.
    He Y, He T, Guo J, Li R, Xiang Y, Yang D, Guan Z (2016) Catal Sci Technol 6:2239Google Scholar
  40. 40.
    Liu Z, Hu Y, Chen X, Wu Q, Lin X (2015) Tetrahedron 71:663Google Scholar
  41. 41.
    Wang J, Yin B, Yin C, Wu Q, Lin X (2011) Tetrahedron 67:2689Google Scholar
  42. 42.
    Chai S, Lai Y, Xu J, Zhang H, Zhu Q, Zhang P (2011) Adv Synth Catal 353:371Google Scholar
  43. 43.
    Xie Z, Wang N, Wu W, Le Z, Yu X (2014) J Biotechnol 170:1Google Scholar
  44. 44.
    Zhou L, Wang N, Zhang W, Xie Z, Yu X (2013) J Mol Catal B: Enzym 91:37Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Green Chemistry & Technology, College of ChemistryMinistry of Education, Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations