Advertisement

Fe–PNP Pincer Complex Immobilized on Graphene Oxide as a Catalyst for Suzuki–Miyaura Coupling Reactions

  • Lolakshi Mahesh Kumar
  • Praveen Mishra
  • Badekai Ramachandra BhatEmail author
Article
  • 50 Downloads

Abstract

Fe–PNP pincer complexes are the upcoming homogenous catalyst for organic reactions to overcome the need of much expensive Pd based catalysts. However, the lack of recovery and reusability are two significant challenges for homogeneous catalysts. We report herein a Fe–PNP complex immobilized on graphene oxide as a heterogeneous catalyst for the Suzuki coupling reactions. The prepared composite showed remarkable conversion efficiency towards Suzuki coupling reaction between phenylboronic acid and aryl halides. The study also discusses the parameters that are affecting the coupling reaction. The proposed catalyst can be quickly recovered and reused without any significant reduction in performance.

Graphical Abstract

Keywords

Fe–PNP pincer complex Heterogenous catalyst Suzuki–Miyaura cross-coupling 

Abbreviations

GO

Graphene oxide

NH2-GO

Amino-functionalized graphene oxide

FPAGO

Fe–PNP immobilized amino functionalized graphene oxide

Notes

Acknowledgements

The authors, Mrs. Lolakshi Mahesh Kumar and Mr. Praveen Mishra acknowledge National Institute of Technology Karnataka, Surathkal for providing a research fellowship. We are also thankful to MNIT, Jaipur for providing XPS facility.

References

  1. 1.
    Dyachkovskii FS, Pomogailo AD (1980) J Polym Sci 68:97–108Google Scholar
  2. 2.
    Abu-Dief AM, Mohamed IMA (2015) Beni-Suef Univ J Basic Appl Sci 4:119–133CrossRefGoogle Scholar
  3. 3.
    Gupta KC, Sutar AK (2008) Coord Chem Rev 252:1420–1450CrossRefGoogle Scholar
  4. 4.
    Twigg MV (1994) (ed) Mechanisms of inorganic and organometallic reactions, Vol 8. Springer, BostonGoogle Scholar
  5. 5.
    Bayón JC, Claver C, Masdeu-Bultó AM (1999) Coord Chem Rev 193–195:73–145CrossRefGoogle Scholar
  6. 6.
    Bregeault J-M (2003) Dalton Trans 3289–3302Google Scholar
  7. 7.
    DuBois MR (1989) Chem Rev 89:1–9CrossRefGoogle Scholar
  8. 8.
    Filonenko GA, Conley MP, Copéret C, Lutz M, Hensen EJM, Pidko EA (2013) ACS Catal 3:2522–2526CrossRefGoogle Scholar
  9. 9.
    Crabtree RH (2012) Chem Rev 112:1536–1554CrossRefGoogle Scholar
  10. 10.
    Hübner S, de Vries JG, Farina V (2016) Adv Synth Catal 358:3–25CrossRefGoogle Scholar
  11. 11.
    Cheng Y, Fan Y, Pei Y, Qiao M (2015) Catal Sci Technol 5:3903–3916CrossRefGoogle Scholar
  12. 12.
    Kharisov BI, Kharissova OV, Vázquez Dimas A, Gómez De La Fuente I, Peña Méndez Y (2016) J Coord Chem 69:1125–1151CrossRefGoogle Scholar
  13. 13.
    Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2012) ACS Catal 2:145–154CrossRefGoogle Scholar
  14. 14.
    Bai C, Zhao Q, Li Y, Zhang G, Zhang F, Fan X (2014) Catal Lett 144:1617–1623CrossRefGoogle Scholar
  15. 15.
    Vats T, Dutt S, Kumar R, Siril PF (2016) Sci Rep 6:33053CrossRefGoogle Scholar
  16. 16.
    Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549:60–67CrossRefGoogle Scholar
  17. 17.
    Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SCB, Chen Y (2018) PLoS ONE 13:e0193281CrossRefGoogle Scholar
  18. 18.
    Yamamoto S-i, Kinoshita H, Hashimoto H, Nishina Y (2014) Nanoscale 6:6501–6505CrossRefGoogle Scholar
  19. 19.
    Mastalir M, Kirchner K (2017) Monatsh für Chem - Chem Monthly 148:105–109CrossRefGoogle Scholar
  20. 20.
    Mastalir M, Pittenauer E, Stöger B, Allmaier G, Kirchner K (2017) Org Lett 19:2178–2181CrossRefGoogle Scholar
  21. 21.
    Kumar LM, Ansari RM, Bhat BR (2017) Appl Organomet Chem  https://doi.org/10.1002/aoc.4054 Google Scholar
  22. 22.
    Mastalir M, de Aguiar SRMM, Glatz M, Stöger B, Kirchner K (2016) Organometallics 35:229–232CrossRefGoogle Scholar
  23. 23.
    Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K (2016) J Am Chem Soc 138:15543–15546CrossRefGoogle Scholar
  24. 24.
    Bauer G, Hu X (2016) Inorg Chem Front 3:741–765CrossRefGoogle Scholar
  25. 25.
    Holland AM, Oliver AG, Iluc VM (2017) Acta Crystallogr C 73:569–574CrossRefGoogle Scholar
  26. 26.
    Glatz M, Schröder-Holzhacker C, Bichler B, Stöger B, Mereiter K, Veiros LF, Kirchner K (2016) Monatsh für Chem - Chem Monthly 147:1713–1719CrossRefGoogle Scholar
  27. 27.
    Lagaditis PO, Schluschaß B, Demeshko S, Würtele C, Schneider S (2016) Inorg Chem 55:4529–4536CrossRefGoogle Scholar
  28. 28.
    Mastalir M, Stöger B, Pittenauer E, Allmaier G, Kirchner K (2016) Org Lett 18:3186–3189CrossRefGoogle Scholar
  29. 29.
    Gruger N, Wadepohl H, Gade LH (2012) Dalton Trans 41:14028–14030CrossRefGoogle Scholar
  30. 30.
    Arce P, Vera C, Escudero D, Guerrero J, Lappin A, Oliver A, Jara DH, Ferraudi G, Lemus L (2017) Dalton Trans 46:13432–13445CrossRefGoogle Scholar
  31. 31.
    Aguiar SR, Stoger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K (2016) Dalton Trans 45:13834–13845CrossRefGoogle Scholar
  32. 32.
    Chakraborty S, Bhattacharya P, Dai H, Guan H (2015) Acc Chem Res 48:1995–2003CrossRefGoogle Scholar
  33. 33.
    Mastalir M, Stöger B, Pittenauer E, Puchberger M, Allmaier G, Kirchner K (2016) Adv Synth Catal 358:3824–3831CrossRefGoogle Scholar
  34. 34.
    Mellone I, Gorgas N, Bertini F, Peruzzini M, Kirchner K, Gonsalvi L (2016) Organometallics 35:3344–3349CrossRefGoogle Scholar
  35. 35.
    Yang X (2011) ACS Catal 1:849–854CrossRefGoogle Scholar
  36. 36.
    Morello GR, Hopmann KH (2017) ACS Catal 7:5847–5855CrossRefGoogle Scholar
  37. 37.
    Bichler B, Holzhacker C, Stöger B, Puchberger M, Veiros LF, Kirchner K (2013) Organometallics 32:4114–4121CrossRefGoogle Scholar
  38. 38.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814CrossRefGoogle Scholar
  39. 39.
    Su H, Li Z, Huo Q, Guan J, Kan Q (2014) RSC Adv 4:9990–9996CrossRefGoogle Scholar
  40. 40.
    Lavallee DK, Brace J, Winograd N (1979) Inorg Chem 18:1776–1780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lolakshi Mahesh Kumar
    • 1
  • Praveen Mishra
    • 1
  • Badekai Ramachandra Bhat
    • 1
    Email author
  1. 1.Catalysis and Materials Laboratory, Department of ChemistryNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations