Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions

  • Yanqiang Li
  • Huiyong Huang
  • Siru Chen
  • Chao Wang
  • Anmin Liu
  • Tingli Ma


The oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are two of the core reactions that occur in fuel cells and water electrolysis devices. Heteroatom-doped carbon materials are promising metal-free electrocatalysts to improve the conversion efficiency of these devices. To optimize the nanostructures of such carbon-based catalysts, herein, we reported an effective template method to synthesize N doped carbon nanotubes by using polydopamine as a precursor. The use of the ZnO nanowire not only serves as a self-sacrificial template to direct the formation of the nanotube, but also greatly extends the porosity of the carbon nanotube. Moreover, the polydopamine precursor also leads to effective N doping. An optimized sample, NCNT-900, shows high ORR performance comparable with that of Pt/C as well as good HER performance in both alkaline and acid media, making it one of the most effective carbon-based HER catalysts. This strategy offers an opportunity to synthesize catalysts with higher activity by rational design of a carbon precursor with higher N content or multi-heteroatom co-doping.

Graphical Abstract

Nitrogen doped carbon nanotube with high performance for both ORR and HER was synthesized using ZnO nanowires as template. The obtained materials show effective N doping that provides abundant active sites, high surface area and unique textural parameters that can effectively enhance mass transfer. When used for electrocatalysts, NCNT-900 shows high ORR performance comparable with that of Pt/C and good HER performance in both alkaline and acid media.


Electrocatalysis Oxygen reduction reaction Hydrogen evolution reaction Metal-free catalysts Carbon nanotubes 



This work is supported financially by the National Natural Science Foundation of China (Grant No. 51772039), the Fundamental Research Funds for the Central University (DUT18LK13) and the Research Center for Solar Light Energy Conversion, Kyushu Institute of Technology, Japan.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2018_2636_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2151 KB)


  1. 1.
    Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Chem Rev 110:6474CrossRefGoogle Scholar
  2. 2.
    Turner JA (2004) Science 305:972CrossRefGoogle Scholar
  3. 3.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729CrossRefGoogle Scholar
  4. 4.
    Duan J, Chen S, Jaroniec M, Qiao S (2015) ACS Catal 5:5207CrossRefGoogle Scholar
  5. 5.
    Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Adv Mater 29:1605838CrossRefGoogle Scholar
  6. 6.
    Huang Z, Wang J, Peng Y, Jung C, Fisher A, Wang X (2017) Adv Energy Mater 7:1700544CrossRefGoogle Scholar
  7. 7.
    Li J, Hou P, Liu C (2017) Small 7:1702002CrossRefGoogle Scholar
  8. 8.
    Debe MK (2012) Nature 486:43CrossRefGoogle Scholar
  9. 9.
    Cheng N, Banis MN, Liu J, Riese A, Mu S, Li R, Sham TK, Sun X (2015) Energy Environ Sci 8:1450CrossRefGoogle Scholar
  10. 10.
    Wu G, Zelenay P (2013) Acc Chem Res 46:1878CrossRefGoogle Scholar
  11. 11.
    Fan X, Zhou H, Guo X (2015) ACS Nano 9:5125CrossRefGoogle Scholar
  12. 12.
    Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y (2016) Adv Mater 28:3785CrossRefGoogle Scholar
  13. 13.
    Li Y, Xu H, Huang H, Gao L, Zhao Y, Ma T (2017) Electrochim Acta 254:148CrossRefGoogle Scholar
  14. 14.
    Li JC, Hou PX, Zhang L, Liu C, Cheng HM (2014) Nanoscale 6:12065CrossRefGoogle Scholar
  15. 15.
    Liu X, Zhou W, Yang L, Li L, Zhang Z, Ke Y, Chen S (2015) J Mater Chem A 3:8840CrossRefGoogle Scholar
  16. 16.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z (2013) J Am Chem Soc 135:1201CrossRefGoogle Scholar
  18. 18.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361CrossRefGoogle Scholar
  19. 19.
    Davodi F, Tavakkoli M, Lahtinen J, Kallio T (2017) J Catal 353:19CrossRefGoogle Scholar
  20. 20.
    Wang D, Su D (2014) Energy Environ Sci 7:576CrossRefGoogle Scholar
  21. 21.
    Paraknowitsch JP, Thomas A (2013) Energy Environ Sci 6:2839CrossRefGoogle Scholar
  22. 22.
    Gong YJ, Fei HL, Zou XL, Zhou W, Yang SB, Ye GL, Liu Z, Peng ZW, Lou J, Vajtai R, Yakobson BI, Tour JM, Ajayan PM (2015) Chem Mater 27:1181CrossRefGoogle Scholar
  23. 23.
    Qu K, Zheng Y, Zhang X, Davey K, Dai S, Qiao S (2017) ACS Nano 11:7293CrossRefGoogle Scholar
  24. 24.
    Song Z, Liu W, Cheng N, Banis MN, Li X, Sun Q, Xiao B, Liu Y, Lushington A, Li R, Liu L, Sun X (2017) Mater Horiz 4:900CrossRefGoogle Scholar
  25. 25.
    Chen Y, Wang C, Wu Z, Xiong Y, Xu Q, Yu S, Jiang H (2015) Adv Mater 27:5010CrossRefGoogle Scholar
  26. 26.
    Ferrero GA, Preuss K, Fuertes AB, Sevilla M, Titirici MM (2016) J Mater Chem A 4:2581CrossRefGoogle Scholar
  27. 27.
    Xing T, Zheng Y, Li L, Cowie BCC, Gunzelmann D, Qiao S, Huang S, Chen Y (2014) ACS Nano 8:6856CrossRefGoogle Scholar
  28. 28.
    Liu R, Wu D, Feng X, Mullen K (2010) Angew Chem 122:2619CrossRefGoogle Scholar
  29. 29.
    Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan L, Alvi S, Li L (2013) Angew Chem Int Ed 52:11755CrossRefGoogle Scholar
  30. 30.
    Shuai XM, Shen WZ WZ (2011) J Phys Chem C 2011, 115:6415CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Yi Z, Wang J, Tian X, Xu P, Shi G, Wang S (2017) J Mater Chem A 5:17064CrossRefGoogle Scholar
  32. 32.
    Chen B, Li F, Mei Q, Yang Y, Liu H, Yuan G, Han B (2017) Chem Commun 53:13019CrossRefGoogle Scholar
  33. 33.
    Li Y, Xu H, Huang H, Gao L, Ma T (2018) J Electrochem Soc 165:F158CrossRefGoogle Scholar
  34. 34.
    Cheon JY, Kim JH, Kim J, Goddeti JH, Park KC, Joo JY SH (2014) J Am Chem Soc 136:8875CrossRefGoogle Scholar
  35. 35.
    Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S, Qi X, Wei Z (2015) J Am Chem Soc 137:5414CrossRefGoogle Scholar
  36. 36.
    Fechler N, Zussblatt NP, Rothe R, Schlogl R, Willinger MG, Chmelka BF, Antonietti M (2016) Adv Mater 28:1287CrossRefGoogle Scholar
  37. 37.
    Li S, Cheng C, Liang H, Feng X, Thomas A (2017) Adv Mater 29:1700707CrossRefGoogle Scholar
  38. 38.
    Wei W, Liang H, Parvez K, Zhuang X, Feng X, Mullen K (2014) Angew Chem Int Ed 53:1570CrossRefGoogle Scholar
  39. 39.
    Muthukrishnan A, Nabae Y, Chang C, Okajimaa T, Ohsaka T (2015) Catal Sci Technol 5:1764CrossRefGoogle Scholar
  40. 40.
    Singh D, Jenjeti R, Sampath S, Eswaramoorthy M (2017) J Mater Chem A 5:6025CrossRefGoogle Scholar
  41. 41.
    Skulason E, Tripkovic V, Bjorketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Norskov JK (2010) J Phys Chem C 114:18182CrossRefGoogle Scholar
  42. 42.
    Conway BE, Tilak BV (2002) Electrochim Acta 47:3571CrossRefGoogle Scholar
  43. 43.
    Zheng Y, Jiao Y, Zhu Y, Li H, Han L, Chen Y, Du Y, Jaroniec A, Qiao M S (2014) Nat Commun 5:3783CrossRefGoogle Scholar
  44. 44.
    Lai J, Li S, Wu F, Saqi M, Luque R, Xu G (2016) Energy Environ Sci 9:1210CrossRefGoogle Scholar
  45. 45.
    Yue X, Huang S, Cai J, Jin Y, Shen P (2017) J Mater Chem A 5:7784CrossRefGoogle Scholar
  46. 46.
    Zheng Y, Jiao Y, Li L, Xing T, Chen Y, Jaroniec M, Qiao S (2014) ACS Nano 8:5290CrossRefGoogle Scholar
  47. 47.
    Ito Y, Cong W, Fujita T, Tang Z, Chen M (2015) Angew Chem Int Ed 54:2131CrossRefGoogle Scholar
  48. 48.
    Yan X, Jia Y, Odedairo T, Zhao X, Jin Z, Zhu Z, Yao X (2016) Chem Commun 52:8156CrossRefGoogle Scholar
  49. 49.
    Zhang B, Wen Z, Ci S, Chen J, He Z (2014) RSC Adv 4:49161CrossRefGoogle Scholar
  50. 50.
    Zhao X, Li S, Cheng H, Schmidt J, Thomas A (2018) ACS Appl Mater Interfaces 10:3912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical EngineeringDalian University of TechnologyPanjinChina
  2. 2.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan
  3. 3.State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physicsthe Chinese Academy of SciencesDalianChina

Personalised recommendations