Ionic Liquids Catalyzed Friedel–Crafts Alkylation of Substituted Benzenes with CCl4 Toward Trichloromethylarenes

  • Xinyu Lyu
  • Wencheng Wang
  • Yiqun Sun
  • Qian Zhao
  • Tao QiuEmail author


An ionic liquid catalyzed Friedel–Crafts alkylation reaction of substituted benzenes with CCl4 was developed. The reaction proceeded efficiently under mild conditions, gave corresponding trichloromethylarenes with diversity functional groups in moderate to good yields. The influence of Lewis acidity of ionic liquids on the conversion of the alkylation reaction has been investigated. Notably, the probable mechanism of this reaction has been proposed with the assistance of 27Al NMR spectroscopy. It was noteworthy that the predominance of [Al2Cl7] species in EmimCl–AlCl3, N = 0.67 could be detected by 27Al NMR spectral analysis, and [AlCl4] was generated at the beginning of reaction. Additionally, it was found that [AlCl4] could be transformed into [Al2Cl7] when the reaction finished. Some control experiments confirmed that the interaction between Lewis acidic species [Al2Cl7] of the ionic liquid and CCl4 led to the change in speciation of aluminum during the alkylation reactions.

Graphical Abstract


Trichloromethylarenes Friedel–Crafts alkylation Ionic liquids Catalysts Mechanism 



We are thankful for assistance from the staff at Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (Changzhou University). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

10562_2018_2633_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 KB)


  1. 1.
    Belen’kii LI, Brokhovetskii DB, Krayushkin MM (1991) Tetrahedron 47(3):447–456CrossRefGoogle Scholar
  2. 2.
    Rondestvedt CS (1976) J Org Chem 41(22):3569–3574CrossRefGoogle Scholar
  3. 3.
    Rosca SI, Stan R, Bratu C, Deleanu C (2010) Rev Chim 61(10):940–945Google Scholar
  4. 4.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316(5831):1597–1600CrossRefGoogle Scholar
  5. 5.
    Hu P, Wang Y, Meng X, Zhang R, Liu H, Xu C, Liu Z (2017) Fuel 189:203–209CrossRefGoogle Scholar
  6. 6.
    Li C, Liu W, Zhao Z (2007) Catal Commun 8(11):1834–1837CrossRefGoogle Scholar
  7. 7.
    Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF, Pilinger M, Urakawa A, Valente AA (2015) J Catal 329(2):522–537CrossRefGoogle Scholar
  8. 8.
    Liao Y, Huang X, Liao X, Shi S (2011) J Mol Catal A 347(1–2):46–51CrossRefGoogle Scholar
  9. 9.
    Leng Y, Wang J, Zhu D, Wu Y, Zhao P (2009) J Mol Catal A 313(1–2):1–6CrossRefGoogle Scholar
  10. 10.
    Catrinescu C, Fernandes C, Castilho P, Breen C (2015) Appl Catal A 489:171–179CrossRefGoogle Scholar
  11. 11.
    Wang G, Yu N, Peng L, Tan R, Zhao H, Yin D, Qiu H, Fu Z, Yin D (2008) Catal Lett 123(3–4):252–258CrossRefGoogle Scholar
  12. 12.
    Earle MJ, Seddon KR (2000) Pure Appl Chem 72(7):1391–1398CrossRefGoogle Scholar
  13. 13.
    Shiflett MB, Yokozeki A (2016) J Chem Eng Data 54(1):108–114CrossRefGoogle Scholar
  14. 14.
    Zhou D, Zhou R, Chen C, Yee WA, Kong J, Ding G, Lu X (2013) J Phys Chem B 117(25):7783–7789CrossRefGoogle Scholar
  15. 15.
    Park S, Kazlauskas RJ (2003) Curr Opin Biotechnol 14(4):432–437CrossRefGoogle Scholar
  16. 16.
    Howarth J, James P, Dai J (2000) Tetrahedron Lett 41(52):10319–10321CrossRefGoogle Scholar
  17. 17.
    Xie X, Lu J, Chen B, Han J, She X, Pan X (2004) Tetrahedron Lett 45(4):809–811CrossRefGoogle Scholar
  18. 18.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39(21):3772–3789CrossRefGoogle Scholar
  19. 19.
    Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Biotechnol Bioeng 108(3):511–520CrossRefGoogle Scholar
  20. 20.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) J Am Chem Soc 125(22):6032–6033CrossRefGoogle Scholar
  21. 21.
    Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun 19(19):2010–2011CrossRefGoogle Scholar
  22. 22.
    Piao LY, Fu X, Yang YL, Tao GH, Kou Y (2004) Catal Today 93–95:301–305CrossRefGoogle Scholar
  23. 23.
    Li WK, Zhou GD, Mak T (2008) Advanced structural inorganic chemistry. Oxford University Press, New YorkCrossRefGoogle Scholar
  24. 24.
    Nara SJ, Harjani JR, Salunkhe MM (2001) J Org Chem 66(25):8616–8620CrossRefGoogle Scholar
  25. 25.
    Olah GA (1963) Friedel-Crafts and related reactions. Interscience Publishers, New YorkGoogle Scholar
  26. 26.
    Abbott AP, Fulian Q, Abood HM, Ali MR, Ryder KS (2010) Phys Chem Chem Phys 12(8):1862–1872CrossRefGoogle Scholar
  27. 27.
    Jiang T, Brym Chollier MJ, Dubé G, Lasia A, Brisard GM (2006) Surf Coat Technol 201(1):10–18CrossRefGoogle Scholar
  28. 28.
    Furukawa J, Kobayashi E, Arai Y (1971) J Polym Sci B 9(11):805–812CrossRefGoogle Scholar
  29. 29.
    Jensen FR, Brown HC (1958) J Am Chem Soc 80(15):4042–4045CrossRefGoogle Scholar
  30. 30.
    Matsumoto T, Ichikawa K (1984) Chemischer Informationsdienst 15(44):4316–4320Google Scholar
  31. 31.
    Karpinski ZJ, Osteryoung RA (1984) Chemischer Informationsdienst 15(33):1491–1494CrossRefGoogle Scholar
  32. 32.
    Hussey CL, Scheffler TB, Wilkes JS, Fanin AA Jr (1986) J Electrochem Soc 133(7):1389–1391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xinyu Lyu
    • 1
  • Wencheng Wang
    • 1
  • Yiqun Sun
    • 1
  • Qian Zhao
    • 1
  • Tao Qiu
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations