Catalysis Letters

, Volume 149, Issue 2, pp 449–455 | Cite as

Benzyl Alcohol Oxidation Using Gold Catalysts Derived from Au8 Clusters on TiO2

  • Rohul H. AdnanEmail author
  • Vladimir B. Golovko


Atomically-precise gold clusters have gained attraction in catalysis due to high fraction of low-coordinated gold atoms, unique structural geometry and ligand effect. Phosphine-ligated gold clusters offer an advantage in the light of the labile gold-phosphorous bond for easy ligand removal. Here, heterogeneous gold catalysts were prepared by depositing atomically-precise phosphine-ligated gold clusters, Au8(PPh3)8(NO3)2 onto anatase-phase TiO2 nanoparticles. The catalysts were then calcined under two different conditions: O2 (Au8/TiO2:O2) and O2 followed by H2 (Au8/TiO2:O2–H2) at 200 °C, to dislodge phosphine ligands from the Au core. It was found that Au8/TiO2:O2–H2 catalyst showed a decent catalytic activity in benzyl alcohol oxidation while Au8/TiO2 and Au8/TiO2:O2 were completely inactive. Such results imply that small-size gold clusters (2–3 nm) alone do not always contribute to high catalytic activity of gold catalysts. It is suggested that the presence of NO3 species defines the catalytic activity of supported gold clusters in benzyl alcohol oxidation in the case of these catalysts and reinforces our initial claim in the previous work.

Graphical Abstract


Heterogeneous catalysis Alcohols Oxidation Green chemistry 



The authors would like to thank Professor Milo Kral and Mike Flaws for their help with HRTEM imaging, Dr. Meike Holzenkaempfer and Dr. Marie Squire for development of the HPLC methodology. This work was supported by the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury.

Supplementary material

10562_2018_2625_MOESM1_ESM.docx (252 kb)
Supplementary material 1 (DOCX 251 KB)


  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408Google Scholar
  2. 2.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309Google Scholar
  3. 3.
    Yuan Y, Asakura K, Wan H, Tsai K, Iwasawa Y (1996) Chem Lett 25:755–756Google Scholar
  4. 4.
    Prati L, Rossi M (1998) J Catal 176:552–560Google Scholar
  5. 5.
    Iizuka Y, Tode T, Takao T, Yatsu K-i, Takeuchi T, Tsubota S, Haruta M (1999) J Catal 187:50–58Google Scholar
  6. 6.
    Porta F, Prati L, Rossi M, Coluccia S, Martra G (2000) Catal Today 61:165–172Google Scholar
  7. 7.
    Bond GC, Sermon PA (1973) Gold Bulletin 6:102–105Google Scholar
  8. 8.
    Bailie JE, Hutchings GJ (1999) Chem Commun 21:2151–2152Google Scholar
  9. 9.
    Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S (2005) J Catal 236:80–90Google Scholar
  10. 10.
    Milone C, Tropeano ML, Gulino G, Neri G, Ingoglia R, Galvagno S (2002) Chem Commun 8:868–869Google Scholar
  11. 11.
    Li G, Zeng C, Jin R (2014) J Am Chem Soc 136:3673–3679Google Scholar
  12. 12.
    Tamiolakis I, Fountoulaki S, Vordos N, Lykakis IN, Armatas GS (2013) J Mater Chem A 1:14311–14319Google Scholar
  13. 13.
    Pritchard J, Kesavan L, Piccinini M, He Q, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ, Hutchings GJ (2010) Langmuir 26:16568–16577Google Scholar
  14. 14.
    Corma A, Serna P (2006) Science 313:332–334Google Scholar
  15. 15.
    Negishi Y, Nakazaki T, Malola S, Takano S, Niihori Y, Kurashige W, Yamazoe S, Tsukuda T, Häkkinen H (2015) J Am Chem Soc 137:1206–1212Google Scholar
  16. 16.
    Gutrath BS, Englert U, Wang Y, Simon U (2013) Eur J Inorg Chem 2013:2002–2006Google Scholar
  17. 17.
    Donoeva BG, Ovoshchnikov DS, Golovko VB (2013) ACS Catal 3:2986–2991Google Scholar
  18. 18.
    Ovoshchnikov DS, Donoeva BG, Williamson BE, Golovko VB (2014) Catal Sci Technol 4:752–757Google Scholar
  19. 19.
    Adnan RH, Andersson GG, Polson MIJ, Metha GF, Golovko VB (2015) Catal Sci Technol 5:1323–1333Google Scholar
  20. 20.
    Haruta M (2003) Chem Rec 3:75–87Google Scholar
  21. 21.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335Google Scholar
  22. 22.
    Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Science 307:403–407Google Scholar
  23. 23.
    Zhu Y, Qian H, Jin R (2010) Chemistry A 16:11455–11462Google Scholar
  24. 24.
    Liu Y, Tsunoyama H, Akita T, Tsukuda T (2010) Chem Lett 39:159–161Google Scholar
  25. 25.
    Tsunoyama H, Liu Y, Akita T, Ichikuni N, Sakurai H, Xie S, Tsukuda T (2011) Catal Surv Asia 15:230–239Google Scholar
  26. 26.
    Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt J-D, Baiker A (2008) Catal Lett 125:169–176Google Scholar
  27. 27.
    Wan X-K, Wang J-Q, Nan Z-A, Wang Q-M (2017) Sci Adv 3:e1701823Google Scholar
  28. 28.
    Yuan Y, Asakura K, Wan H, Tsai K, Iwasawa Y (1996) Catal Lett 42:15–20Google Scholar
  29. 29.
    Solsona B, Conte M, Cong Y, Carley A, Hutchings G (2005) Chem Commun 18:2351–2353Google Scholar
  30. 30.
    Van der Velden JWA, Bour JJ, Bosman WP, Noordik JH (1983) Inorg Chem 22:1913–1918Google Scholar
  31. 31.
    Gutrath BS, Schiefer F, Homberger M, Englert U, Şerb M-D, Bettray W, Beljakov I, Meded V, Wenzel W, Simon U (2016) Eur J Inorg Chem 2016:975–981Google Scholar
  32. 32.
    Anderson DP, Adnan RH, Alvino JF, Shipper O, Donoeva B, Ruzicka J-Y, Al Qahtani H, Harris HH, Cowie B, Aitken JB, Golovko VB, Metha GF, Andersson GG (2013) Phys Chem Chem Phys 15:14806–14813Google Scholar
  33. 33.
    Gutrath BS, Schiefer F, Homberger M, Englert U, Şerb MD, Bettray W, Beljakov I, Meded V, Wenzel W, Simon U (2016) Eur J Inorg Chem 2016:975–981Google Scholar
  34. 34.
    Higaki T, Zhou M, Lambright KJ, Kirschbaum K, Sfeir MY, Jin R (2018) J Am Chem Soc 140:5691–5695Google Scholar
  35. 35.
    Al Qahtani HS, Kimoto K, Bennett T, Alvino JF, Andersson GG, Metha GF, Golovko VB, Sasaki T, Nakayama T (2016) J Chem Phys 144:114703Google Scholar
  36. 36.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B 110:15700–15707Google Scholar
  37. 37.
    S. L. and and El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366Google Scholar
  38. 38.
    Link S, Wang ZL, El-Sayed MA (1999) J Phys Chem B 103:3529–3533Google Scholar
  39. 39.
    Della Gaspera E, Bersani M, Mattei G, Nguyen T-L, Mulvaney P, Martucci A (2012) Nanoscale 4:5972–5979Google Scholar
  40. 40.
    Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY, Zhu M, Jin R (2016) Nat Commun 7:13240Google Scholar
  41. 41.
    Anderson DP, Alvino JF, Gentleman A, Qahtani HA, Thomsen L, Polson MIJ, Metha GF, Golovko VB, Andersson GG (2013) Phys Chem Chem Phys 15:3917–3929Google Scholar
  42. 42.
    Ruzicka J-Y, Abu Bakar F, Hoeck C, Adnan R, McNicoll C, Kemmitt T, Cowie BC, Metha GF, Andersson GG, Golovko VB (2015) J Phys Chem C 119:24465–24474Google Scholar
  43. 43.
    Liu Y, Tsunoyama H, Akita T, Tsukuda T (2009) J Phys Chem C 113:13457–13461Google Scholar
  44. 44.
    Hirayama J, Kamiya Y (2018) Cataly Sci Technol. Google Scholar
  45. 45.
    Haruta M (2002) CATTECH 6:102–115Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations