Advertisement

Synthesis, Characterization and Catalytic Activity of Nanocrystalline Ce2(MoO4)3/SiO2 as a Novel Catalyst for the Selective Production of Anhydrous Formaldehyde from Methanol

  • Abd El-Aziz A. Said
  • Mohamed N. Goda
Article
  • 73 Downloads

Abstract

In this paper, a series of catalysts of (0.5–10 wt%) Ce2(MoO4)3 supported on SiO2 gel were synthesized via a precipitation assisted impregnation method. The original and calcined catalysts were extensively characterized by TG-DTA, TEM, XRD, FTIR, N2 sorption analysis and acidity measurements. The catalytic activity successfully tested for the direct dehydrogenation of methanol into formaldehyde. Results revealed that, the complete conversion of methanol, with selectively of 100%, to formaldehyde was achieved at 350 °C and about 95% conversion obtained at 325 °C. In addition, a strong correlation between the catalytic activity and acidity was observed. Moreover, the moderate strength of Brønsted acid sites created on the surface of catalyst plays the main role in the production of formaldehyde. Finally, the catalyst exhibited a unique stability towards anhydrous formaldehyde formation up to a duration time of 200 h.

Graphical Abstract

Keywords

Methanol Formaldehyde Ce2(MoO4)3 Acidity Stability 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
  2. 2.
    Bowker M, Holroyd R, Elliott A, Morrall P, Alouche A, Entwistle C, Toerncrona A (2002) Catal Lett 83:165CrossRefGoogle Scholar
  3. 3.
    Soares APV, Portela MF, Kiennemann A (2001) Catal Commun 2:159CrossRefGoogle Scholar
  4. 4.
    Soares APV, Portela MF, Kiennemann A, Hilaire L (2003) Chem Eng Sci 58:1315CrossRefGoogle Scholar
  5. 5.
    Yamamoto T, Shimoda A, Okuhara T, Mison M (1988) Chem Lett 17:273CrossRefGoogle Scholar
  6. 6.
    Ren L-P, Dai W-L, Yang X-L, Cao Y, Li H, Fan K-N (2004) Appl Catal A: Gen 273:83CrossRefGoogle Scholar
  7. 7.
    Ren L-P, Dai W-L, Cao Y, Li H, Fan K (2003) Chem Commun 3030Google Scholar
  8. 8.
    Sreeram KJ, Srinivasan R, Devi JM, Nair BU, Ramasami T (2007) Dyes Pigm 75:687CrossRefGoogle Scholar
  9. 9.
    Rao BG, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Catal Lett 145:1436CrossRefGoogle Scholar
  10. 10.
    Navgire ME, Gogo P, Mallesham B, Rangaswamy A, Reedy BM, Lande MK (2016) RSC Adv 6:28679CrossRefGoogle Scholar
  11. 11.
    Brazdil JF, Toft MA, Lin SS, McKenna ST, Zajac G, Kaduk JA, Golab JT (2015) Appl Catal A Gen 495:115CrossRefGoogle Scholar
  12. 12.
    Ousefia T, Khanchia AR, Ahmadia SJ, Rofoueib MK, Yavaria R, Davarkhaha R, Myanji B (2012) J Hazard Mater 215– 216:266CrossRefGoogle Scholar
  13. 13.
    Nilchia A, Saberia R, Azizpourb H, Moradib M, Zarghamib R, Naushad M (2011) Chemistry and Ecology iFirst: 1–17Google Scholar
  14. 14.
    Wan C, Cheng D, Chen F, Zhan X (2016) Catal Today 264:180CrossRefGoogle Scholar
  15. 15.
    Kartsonakis IA, Balaskas AC, Kordas JC (2011) Corrosion Sci 53:3771CrossRefGoogle Scholar
  16. 16.
    Hanson TR, Jaworowski MR, Kryzman MR, Vontell JH (2004) European Patent EP1396555, 2004Google Scholar
  17. 17.
    Kartsonakis IA, Kordas G (2010) J Am Ceram Soc 93:65CrossRefGoogle Scholar
  18. 18.
    Li SM, Zhang HR, Liu JH (2007) Trans Nonferrous Met Soc China 17:318CrossRefGoogle Scholar
  19. 19.
    Said AA, Abd El-Wahab MM, Abd El-Aal M (2016) Res Chem Intermed 42:1537CrossRefGoogle Scholar
  20. 20.
    Gervasini A, Auroux A (1991) J Catal 131:190CrossRefGoogle Scholar
  21. 21.
    Gervasini A, Auroux A (1990) J Phys Chem 94:6317Google Scholar
  22. 22.
    Turek W, Krowiak A (2012) Appl Catal A Gen 417–418:102Google Scholar
  23. 23.
    Said AA, Abd El-Wahab MM, Soliman SA, Goda MN (2016) Process Saf Environ Prot 102:370CrossRefGoogle Scholar
  24. 24.
    Brunauer SJ, Deming LS, Deming W, Teller E (1940) J Am Chem Soc 62:1723CrossRefGoogle Scholar
  25. 25.
    de Boer JH, Everette EP, Stone FS (eds) (1985) The structure and properties of porous materials. Butterworths, London, p 68Google Scholar
  26. 26.
    Said AA, Abd El-Wahab MM, Abd El-Aal M (2014) J Mol Catal A Chem 394:40CrossRefGoogle Scholar
  27. 27.
    Said AA, Abd El-Wahab MM, Marwa Abdelhak MM (2017) React Kin Mech Catal 122:433CrossRefGoogle Scholar
  28. 28.
    Said AA, Abd El-Wahab MM, Alian AM (2016) Catal Lett 146:82CrossRefGoogle Scholar
  29. 29.
    Said AA, Goda MN (2018) Chem Phys Lett 703:44CrossRefGoogle Scholar
  30. 30.
    Hong E, Sim H-I, Shin C-H (2016) Chem Eng J 299:156CrossRefGoogle Scholar
  31. 31.
    Ross-Medgaarden EI, Knowles WV, Kim T, Wong MS, Zhou W, Kiely CJ, Wachs IE (2008) J Catal 256:108CrossRefGoogle Scholar
  32. 32.
    Kostestkgy P, Yu J, Gort RJ, Mpourmapkis G (2014) Catal Sci Technol 4:3861CrossRefGoogle Scholar
  33. 33.
    Kuang W, Fan Y, Chen K, Chen Y (1999) J Catal 186:310CrossRefGoogle Scholar
  34. 34.
    Said AA, Abd El-Wahab MM, Alian AM (2014) Mater Sci Eng 64:12058Google Scholar
  35. 35.
    Davydov AA (1990) Infrared spectroscopy of adsorbed species the surface of transition metal oxides. Wiley, ChichesterGoogle Scholar
  36. 36.
    Kubo J, Ueda W (2009) Mater Res Bull 44:906CrossRefGoogle Scholar
  37. 37.
    Music A, Batista J, Levec J (1997) Appl Catal A Gen 165:115CrossRefGoogle Scholar
  38. 38.
    Sagou M, Deguchi T, Nakamura S (1989) Stud Surf Sci Catal 44:139CrossRefGoogle Scholar
  39. 39.
    Ren L-P, Dai W-L, Cao Y, Fan K-N (2003) Catal Lett 85:81CrossRefGoogle Scholar
  40. 40.
    Meyer A, Renken A (1990) Chem Eng Technol 13:145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations