Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 399–409 | Cite as

Synthesis of Efficient Cu/CoFe2O4 Catalysts for Low Temperature CO Oxidation

  • Xiaoyu ChenEmail author
  • Chunlei Wu
  • Zengzeng Guo
Article
  • 49 Downloads

Abstract

Different content of Cu has been loaded onto CoFe2O4 support, and their gas-phase CO oxidation performance has been tested to explore the best Cu loading content and the mechanism of catalyst oxidation. The fundamental characteristics of Cu doped CoFe2O4 are revealed by XRD and TEM. The catalytic mechanism is elucidated by XPS, H2-TPR, CO-TPD and in-situ DRIFTS. The CO oxidation performance is greatly improved upon Cu doping on the surface of CoFe2O4 catalysts. It is found that 5 wt% Cu/CoFe2O4 catalysts showed higher CO oxidation performance.

Graphical Abstract

Keywords

CoFe2O4 nanoparticles Cu/CoFe2O4 catalysts High catalytic efficiency Low temperature catalysis CO oxidation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501195).

References

  1. 1.
    Hyeon T (2003) Chem Commun 927–934Google Scholar
  2. 2.
    Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Angew Chem Int Ed 43:4303–4306CrossRefGoogle Scholar
  3. 3.
    Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Angew Chem Int Ed 43:5645–5649CrossRefGoogle Scholar
  4. 4.
    Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara M (1987) J Magn Magn Mater 65:245–251CrossRefGoogle Scholar
  5. 5.
    Mornet S, Vasseur S, Grasse F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237–247CrossRefGoogle Scholar
  6. 6.
    Li Z, Wei L, Gao MY, Lei H (2005) Adv Mater 17:1001–1005CrossRefGoogle Scholar
  7. 7.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  8. 8.
    Hall DA, Gaster RS, Lin T, Osterfeld SJ, Han S, Murmann B, Wang SX (2010) Biosens Bioelectron 25:2051–2057CrossRefGoogle Scholar
  9. 9.
    Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Muñoz JS, Mikhov M (1998) J Magn Magn Mater 183:163–172CrossRefGoogle Scholar
  10. 10.
    Shenker H (1957) Phys Rev 107:1246CrossRefGoogle Scholar
  11. 11.
    Indra A, Menezes PW, Sahraie NR, Bergmann A, Das C, Tallarida M, Schmeißer D, Strasser P, Driess M (2014) J Am Chem Soc 136:17530–17536CrossRefGoogle Scholar
  12. 12.
    Godinho MI, Catarino MA, da Silva Pereira MI, Mendonça MH, Costa FM (2002) Electrochim Acta 47:4307–4314CrossRefGoogle Scholar
  13. 13.
    Chagas CA, de Souza EF, de Carvalho MCNA, Martins RL, Schmal M (2016) Appl Catal A 519:139–145CrossRefGoogle Scholar
  14. 14.
    Fu Y, Chen H, Sun X, Wang X (2012) Appl Catal B 111:280–287CrossRefGoogle Scholar
  15. 15.
    Tong JH, Bo LL, Li Z, Lei ZQ, Xia CG (2009) J Mol Catal A 307:58–63CrossRefGoogle Scholar
  16. 16.
    Thomas J, Thomas N, Girgsdies F, Beherns M, Huang X, Sudheesh VD, Sebastian V (2017) New J Chem 417:356–7363Google Scholar
  17. 17.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309CrossRefGoogle Scholar
  18. 18.
    Zhou AB, Wang J, Wang H, Li H, Wan JQ, Shen MQ (2018) J Rare Earths 36:257–264CrossRefGoogle Scholar
  19. 19.
    Newton MA, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2016) J Am Chem Soc 138:13930–13940CrossRefGoogle Scholar
  20. 20.
    Haruta M (2004) Gold Bull 37:27–36CrossRefGoogle Scholar
  21. 21.
    Zhang XD, Li HX, Yang Y, Zhang TT, Wen X, Liu N, Wang DJ (2017) J Environ Chem Eng 5:5179–5186CrossRefGoogle Scholar
  22. 22.
    Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18–28CrossRefGoogle Scholar
  23. 23.
    Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) J Magn Magn Mater 308:289–295CrossRefGoogle Scholar
  24. 24.
    Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z (2014) J Magn Magn Mater 371:43–48CrossRefGoogle Scholar
  25. 25.
    Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) J Magn Magn Mater 324:1854–1861CrossRefGoogle Scholar
  26. 26.
    Borgohain C, Senapati KK, Mishra D, Sarma KC, Phukan P (2010) Nanoscale 2:2250–2256CrossRefGoogle Scholar
  27. 27.
    Pramanik NC, Fujii T, Nakanishi M, Takada J (2004) J Mater Chem 14:3328–3332CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Liu Y, Yang Z, Xiong R, Shi J (2011) J Nanopart Res 13:4557–4563CrossRefGoogle Scholar
  29. 29.
    Rondinone AJA, Samia ACS, Zhang ZJ (1999) J Phys Chem B 103:6876–6880CrossRefGoogle Scholar
  30. 30.
    Yang YH, Jing LH, Yu XL, Yan DD, Gao MY (2007) Chem Mater 19:4123–4128CrossRefGoogle Scholar
  31. 31.
    Hong D, Yamada Y, Sheehan M, Shikano S, Kuo CH, Tian M, Tsung CK, Fukuzumi S (2014) ACS Sustain Chem Eng 2:2588–2594CrossRefGoogle Scholar
  32. 32.
    Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Chem Mater 10:3445–3450CrossRefGoogle Scholar
  33. 33.
    Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) J Am Chem Soc 129:12374–12375CrossRefGoogle Scholar
  34. 34.
    Li F, Liu JJ, Evans DG, Duan X (2004) Chem Mater 161:597–602Google Scholar
  35. 35.
    Luo XL, Pan Z, Pei F, Jin ZP, Miao KK, Yang PF, Qian HM, Chen Q, Feng GD (2018) J Ind Eng Chem 59:410–415CrossRefGoogle Scholar
  36. 36.
    Nappini S, Magnano E, Bondino F, Píš I, Barla A, Fantechi E, Pineider F, Sangregorio C, Vaccari L, Venturelli L, Baglioni P (2015) J Phys Chem C 119:25529–25541CrossRefGoogle Scholar
  37. 37.
    Moussy JB (2013) J Phys D 46:143001CrossRefGoogle Scholar
  38. 38.
    Li MY, Mao YC, Yang H, Li W, Wang CS, Liu P, Tong YX (2013) New J Chem 37:3116–3120CrossRefGoogle Scholar
  39. 39.
    Zhou ZP, Zhang Y, Wang ZY, Wei W, Tang WF, Shi J, Xiong R (2008) Appl Surf Sci 254:6972–6975CrossRefGoogle Scholar
  40. 40.
    Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390–406CrossRefGoogle Scholar
  41. 41.
    Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) J Solid State Chem 153:74–81CrossRefGoogle Scholar
  42. 42.
    Hamoudi S, Larachi F, Adnot A, Sayari A (1999) J Catal 185:333–344CrossRefGoogle Scholar
  43. 43.
    Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265–273CrossRefGoogle Scholar
  44. 44.
    Pham TD, Lee BK (2017) J Catal 345:87–95CrossRefGoogle Scholar
  45. 45.
    Chiang LF, Doong R (2014) J Hazard Mater 277:84–92CrossRefGoogle Scholar
  46. 46.
    Zou YL, Kang SZ, Li XQ, Qin LX, Mu J (2014) Int J Hydrog Energy 39:15403–15410CrossRefGoogle Scholar
  47. 47.
    Gu D, Jia CJ, Weidenthaler C, Bongard HJ, Spliethoff B, Schmidt W, Schüth F (2015) J Am Chem Soc 137:11407–11418CrossRefGoogle Scholar
  48. 48.
    Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A 146:255CrossRefGoogle Scholar
  49. 49.
    Jacobs JP, Maltha A, Reintjes JGH, Drimal J, Ponec V, Brongersma HH (1994) J Catal 147:294CrossRefGoogle Scholar
  50. 50.
    Li B, Yildirim E, Li W, Qi DP, Yu JC, Wei JQ, Liu ZY, Sun ZK, Liu Y, Kong B, Xue ZT, Liu ZJ, Yang SW, Chen XD, Zhao DY (2018) Adv Funct Mater 28:1802088–1802095CrossRefGoogle Scholar
  51. 51.
    Yang QJ, Choi H, Al-Abed SR, Dionysiou DD (2007) Appl Catal B 88:462–469CrossRefGoogle Scholar
  52. 52.
    Shen YL, Yu J, Xiao XZ, Guo XM, Mao DS, Huang HJ, Lu GZ (2017) J Catal 352:466–479CrossRefGoogle Scholar
  53. 53.
    Lázár K, Mathew T, Koppány Z, Megyeri J, Samuel V, Mirajkar SP, Rao BS, Guczi L (2002) Phys Chem Chem Phys 4:3530–3536CrossRefGoogle Scholar
  54. 54.
    Zhang FZ, Wei CH, Wu KY, Zhou HT, Hu Y, Preis S (2017) Appl Catal A 547:60–68CrossRefGoogle Scholar
  55. 55.
    Zhou RX, Yu TM, Jiang XY, Chen F, Zheng XM (1999) Appl Surf Sci 148:263–270CrossRefGoogle Scholar
  56. 56.
    Wang WW, Du PP, Zou SH, He HY, Wang RX, Jin Z, Shi S, Huang YY, Si R, Song QS, Jia CJ, Yan CH (2015) ACS Catal 5:2088–2099CrossRefGoogle Scholar
  57. 57.
    Wang K, Cao YL, Hu JD, Li YZ, Xie J, Jia DZ (2017) ACS Appl Mater Interfaces 9:16128–16137CrossRefGoogle Scholar
  58. 58.
    Shen WW, Mao DS, Luo ZM, Yu J (2017) RSC Adv 7:27689–27698CrossRefGoogle Scholar
  59. 59.
    Hossaina ST, Azeevab E, Zhangc K, Zella ET, Bernardd DT, Balazd S, Wange R (2018) Appl Surf Sci 455:132–143CrossRefGoogle Scholar
  60. 60.
    Caputo T, Lisi L, Pirone R, Russo G (2008) Appl Catal A 348:42–53CrossRefGoogle Scholar
  61. 61.
    Ma SM, Lu GZ, Shen YX, Guo Y, Wang YQ, Guo YL (2011) Catal Sci Technol 1:669–674CrossRefGoogle Scholar
  62. 62.
    Debnath B, Bansal A, Salunke HG, Sadhu A, Bhattacharyya S (2016) J Phys Chem C 120:5523–5533CrossRefGoogle Scholar
  63. 63.
    Hornés A, Bera P, Cámara AL, Gamarra D, Munuera G, Martínez-Arias A (2009) J Catal 268:367–375CrossRefGoogle Scholar
  64. 64.
    Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) J Catal 188:176–185CrossRefGoogle Scholar
  65. 65.
    Shan WJ, Shen WJ, Li C (2003) Chem Mater 15:4761–4767CrossRefGoogle Scholar
  66. 66.
    Wang SR, Wang YJ, Jiang JQ, Liu R, Li MY, Wang YM, Su Y, Zhu BL, Zhang SM, Huang WP, Wu SH (2009) Catal Commun 10:640–644CrossRefGoogle Scholar
  67. 67.
    Dey S, Dhal GC, Prasad R, Mohan D (2017) Resour Effic Technol 3:293–302CrossRefGoogle Scholar
  68. 68.
    Jiang DE, Dai S (2011) Phys Chem Chem Phys 13:978–984CrossRefGoogle Scholar
  69. 69.
    Bai BY, Li JH, Hao JM (2015) Appl Catal B 164:241–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Fire Safety in Urban Underground SpaceChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations